Revisiting Video Saliency: A Large-scale Benchmark and a New Model (CVPR18, PAMI19)

Overview

DHF1K

===========================================================================

Wenguan Wang, J. Shen, M.-M Cheng and A. Borji,

Revisiting Video Saliency: A Large-scale Benchmark and a New Model,

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018 and

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2019

===========================================================================

The code (ACLNet) and dataset (DHF1K with raw gaze records, UCF-sports are new added!) can be downloaded from:

Google disk:https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

Baidu pan: https://pan.baidu.com/s/110NIlwRIiEOTyqRwYdDnVg

The Hollywood-2 (74.6G, including attention maps) can be downloaded from:

Google disk:https://drive.google.com/file/d/1vfRKJloNSIczYEOVjB4zMK8r0k4VJuWk/view?usp=sharing

Baidu pan: link:https://pan.baidu.com/s/16BIAuaGEDDbbjylJ8zziuA code:bt3x

Since so many people are interested in the training code, I decide to upload it in above webdisks. Enjoy it.

===========================================================================

Files:

'video': 1000 videos (videoname.AVI)

'annotation/videoname/maps': continuous saliency maps in '.png' format

'annotation/videoname/fixation': binary eye fixation maps in '.png' format

'annotation/videoname/maps': binary eye fixation maps stored in mat file

'generate_frame.m': used for extracting the frame images from AVI videos.

Please note raw data of individual viewers are stored in 'exportdata_train.rar'.

Note that please do not change the way of naming frames.

===========================================================================

Dataset splitting:

Training set: first 600 videos (001.AVI-600.AVI)

Validation set: 100 videos (601.AVI-700.AVI)

Testing set: 300 videos (701.AVI-1000.AVI)

The annotations for the training and val sets are released, but the

annotations of the testing set are held-out for benchmarking.

===========================================================================

We have corrected some statistics of our results (baseline training setting (iii)) on UCF sports dataset. Please see our newest version in ArXiv.

===========================================================================

Note that, for Holly-wood2 dataset, we used the split videos (each video only contains one shot), instead of the full videos.

===========================================================================

The raw data of gaze record "exportdata_train.rar" has been uploaded.

===========================================================================

For DHF1K dataset, we use following functions to generate continous saliency map:

[x,y]=find(fixations);

densityMap= make_gauss_masks(y,x,[video_res_y,video_res_x]);

make_gauss_masks.m has been uploaded.

For UCF and Hollywood, I directly use following functions:

densityMap = imfilter(fixations,fspecial('gaussian',150,20),'replicate');

===========================================================================

Results submission.

Please orgnize your results in following format:

yourmethod/videoname/framename.png

Note that the frames and framenames should be generated by 'generate_frame.m'.

Then send your results to '[email protected]'.

You can only sumbmit ONCE within One week.

Please first test your model on the val set or other video saliency dataset.

The response may be more than one week.

If you want to list your results on our web, please send your name, model

name, paper title, short description of your method and the link of the web

of your project (if you have).

===========================================================================

We use

Keras: 2.2.2

tensorflow: 1.10.0

to implement our model.

===========================================================================

Citation:

@InProceedings{Wang_2018_CVPR,
author = {Wang, Wenguan and Shen, Jianbing and Guo, Fang and Cheng, Ming-Ming and Borji, Ali},
title = {Revisiting Video Saliency: A Large-Scale Benchmark and a New Model},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition},
year = {2018}
}

@ARTICLE{Wang_2019_revisitingVS, 
author={W. {Wang} and J. {Shen} and J. {Xie} and M. {Cheng} and H. {Ling} and A. {Borji}}, 
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
title={Revisiting Video Saliency Prediction in the Deep Learning Era}, 
year={2019}, 
}

If you find our dataset is useful, please cite above papers.

===========================================================================

Code (ACLNet):

You can find the code in google disk: https://drive.google.com/open?id=1sW0tf9RQMO4RR7SyKhU8Kmbm4jwkFGpQ

===========================================================================

Terms of use:

The dataset and code are licensed under a Creative Commons Attribution 4.0 License.

===========================================================================

Contact Information Email: [email protected]


Owner
Wenguan Wang
Postdoctoral Scholar
Wenguan Wang
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
A quantum game modeling of pandemic (QHack 2022)

Contributors: @JongheumJung, @YoonjaeChung, @GyunghunKim Abstract In the regime of a global pandemic, leaders around the world need to consider variou

Yoonjae Chung 8 Apr 03, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Denoising images with Fourier Ring Correlation loss

Denoising images with Fourier Ring Correlation loss The python code accompanies the working manuscript Image quality measurements and denoising using

2 Mar 12, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
Pytorch implementation of YOLOX、PPYOLO、PPYOLOv2、FCOS an so on.

简体中文 | English miemiedetection 概述 miemiedetection是女装大佬咩酱基于YOLOX进行二次开发的个人检测库(使用的深度学习框架为pytorch),支持Windows、Linux系统,以女装大佬咩酱的名字命名。miemiedetection是一个不需要安装的

248 Jan 02, 2023
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Implementation of SSMF: Shifting Seasonal Matrix Factorization

SSMF Implementation of SSMF: Shifting Seasonal Matrix Factorization, Koki Kawabata, Siddharth Bhatia, Rui Liu, Mohit Wadhwa, Bryan Hooi. NeurIPS, 2021

Koki Kawabata 9 Jun 10, 2022