Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Related tags

Deep LearningUIKA
Overview

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis


Requirements

  • python 3.7
  • pytorch-gpu 1.7
  • numpy 1.19.4
  • pytorch_pretrained_bert 0.6.2
  • nltk 3.3
  • GloVe.840B.300d
  • bert-base-uncased

Environment

  • OS: Ubuntu-16.04.1
  • GPU: GeForce RTX 2080
  • CUDA: 10.2
  • cuDNN: v8.0.2

Dataset

  1. target datasets

    • raw data: "./dataset/"
    • processing data: "./dataset_npy/"
    • word embedding file: "./embeddings/"
  2. pretraining datasets

Training options

  • ds_name: the name of target dataset, ['14semeval_laptop', '14semeval_rest', 'Twitter'], default='14semeval_rest'
  • pre_name: the name of pretraining dataset, ['Amazon', 'Yelp'], default='Amazon'
  • bs: batch size to use during training, [64, 100, 200], default=64
  • learning_rate: learning rate to use, [0.001, 0.0005, 0.00001], default=0.001
  • n_epoch: number of epoch to use, [5, 10], default=10
  • model: the name of model, ['ABGCN', 'GCAE', 'ATAE'], default='ABGCN'
  • is_test: train or test the model, [0, 1], default=1
  • is_bert: GloVe-based or BERT-based, [0, 1], default=0
  • alpha: value of parameter \alpha in knowledge guidance loss of the paper, [0.5, 0.6, 0.7], default=0.06
  • stage: the number of training stage, [1, 2, 3, 4], default=4

Running

  1. running for the first stage (pretraining on the document)

    • python ./main.py -pre_name Amaozn -bs 256 -learning_rate 0.0005 -n_epoch 10 -model ABGCN -is_test 0 -is_bert 0 -stage 1
  2. running for the second stage

    • python ./main.py -ds_name 14semeval_laptop -bs 64 -learning_rate 0.001 -n_epoch 5 -model ABGCN -is_test 0 -is_bert 0 -alpha 0.6 -stage 2
  3. runing for the final stage

    • python ./main.py -ds_name 14semeval_laptop -bs 64 -learning_rate 0.001 -n_epoch 10 -model ABGCN -is_test 0 -is_bert 0 -stage 3
  4. training from scratch:

    • python ./main.py -ds_name 14semeval_laptop -bs 64 -learning_rate 0.001 -n_epoch 10 -model ABGCN -is_test 0 -is_bert 0 -stage 4

Evaluation

To have a quick look, we saved the best model weight trained on the target datasets in the "./best_model_weight". You can easily load them and test the performance. Due to the limited file space, we only provide the weight of ABGCN on 14semeval_laptop and 14semeval_rest datasets. You can evaluate the model weight with:

  • python ./main.py -ds_name 14semeval_laptop -bs 64 -model ABGCN -is_test 1 -is_bert 0
  • python ./main.py -ds_name 14semeval_rest-bs 64 -model ABGCN -is_test 1 -is_bert 0

Notes

  • The target datasets and more than 50% of the code are borrowed from TNet-ATT (Tang et.al, ACL2019).

  • The pretraining datasets are obtained from www.Kaggle.com.

Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022