[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Related tags

Deep LearningMCL
Overview

Mutual Contrastive Learning for Visual Representation Learning

This project provides source code for our Mutual Contrastive Learning for Visual Representation Learning (MCL).

Installation

Requirements

Ubuntu 18.04 LTS

Python 3.8 (Anaconda is recommended)

CUDA 11.1

PyTorch 1.7.0

NCCL for CUDA 11.1

Supervised Learning on CIFAR-100 dataset

Dataset

CIFAR-100 : download

unzip to the ./data folder

Training two baseline networks

python main_cifar.py --arch resnet32 --number-net 2

More commands for training various architectures can be found in scripts/train_cifar_baseline.sh

Training two networks by MCL

python main_cifar.py --arch resnet32  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_cifar_mcl.sh

Results of MCL on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-32 70.91±0.14 72.96±0.28 74.04±0.07
ResNet-56 73.15±0.23 74.48±0.23 75.74±0.16
ResNet-110 75.29±0.16 77.12±0.20 78.82±0.14
WRN-16-2 72.55±0.24 74.56±0.11 75.79±0.07
WRN-40-2 76.89±0.29 77.51±0.42 78.84±0.22
HCGNet-A1 77.42±0.16 78.62±0.26 79.50±0.15
ShuffleNetV2 0.5× 67.39±0.35 69.55±0.22 70.92±0.28
ShuffleNetV2 1× 70.93±0.24 73.26±0.18 75.18±0.25

Training multiple networks by MCL combined with Logit distillation

python main_cifar.py --arch WRN_16_2  --number-net 4 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. \
    --logit-distill

More commands for training various architectures can be found in scripts/train_cifar_mcl_logit.sh

Results of MCL combined with logit distillation on CIFAR-100

We perform all experiments on a single NVIDIA RTX 3090 GPU (24GB) with three runs.

Network Baseline MCL(×4)+Logit KD
WRN-16-2 72.55±0.24 76.34±0.22
WRN-40-2 76.89±0.29 80.02±0.45
WRN-28-4 79.17±0.29 81.68±0.31
ShuffleNetV2 1× 70.93±0.24 77.02±0.32
HCGNet-A2 79.00±0.41 82.47±0.20

Supervised Learning on ImageNet dataset

Dataset preparation

  • Download the ImageNet dataset to YOUR_IMAGENET_PATH and move validation images to labeled subfolders

  • Create a datasets subfolder and a symlink to the ImageNet dataset

$ ln -s PATH_TO_YOUR_IMAGENET ./data/

Folder of ImageNet Dataset:

data/ImageNet
├── train
├── val

Training two networks by MCL

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×2) MCL(×4)
ResNet-18 69.76 70.32 70.77
ResNet-34 73.30 74.13 74.34

Training two networks by MCL combined with logit distillation

python main_cifar.py --arch resnet18  --number-net 2 \
    --alpha 0.1 --gamma 1. --beta 0.1 --lam 1. 

More commands for training various architectures can be found in scripts/train_imagenet_mcl.sh

Results of MCL combined with logit distillation on ImageNet

We perform all experiments on a single NVIDIA Tesla V100 GPU (32GB) with three runs.

Network Baseline MCL(×4)+Logit KD
ResNet-18 69.76 70.82

Self-Supervised Learning on ImageNet dataset

Apply MCL(×2) to MoCo

python main_moco_mcl.py \
  -a resnet18 \
  --lr 0.03 \
  --batch-size 256 \
  --number-net 2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Linear Classification

python main_lincls.py \
  -a resnet18 \
  --lr 30.0 \
  --batch-size 256 \
  --pretrained [your checkpoint path]/checkpoint_0199.pth.tar \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed \
  --world-size 1 \
  --rank 0 \
  --gpu-ids 0,1,2,3,4,5,6,7 

Results of applying MCL to MoCo on ImageNet

We perform all experiments on 8 NVIDIA RTX 3090 GPUs with three runs.

Network Baseline MCL(×2)
ResNet-18 47.45±0.11 48.04±0.13

Citation

@inproceedings{yang2022mcl,
  title={Mutual Contrastive Learning for Visual Representation Learning},
  author={Chuanguang Yang, Zhulin An, Linhang Cai, Yongjun Xu},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}
Owner
winycg
winycg
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
DziriBERT: a Pre-trained Language Model for the Algerian Dialect

DziriBERT DziriBERT is the first Transformer-based Language Model that has been pre-trained specifically for the Algerian Dialect. It handles Algerian

117 Jan 07, 2023
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval [toc] 1. Introduction This repository provides the code for our paper at

13 Dec 08, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Interactive Terraform visualization. State and configuration explorer.

Rover - Terraform Visualizer Rover is a Terraform visualizer. In order to do this, Rover: generates a plan file and parses the configuration in the ro

Tu Nguyen 2.3k Jan 07, 2023
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022