使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Overview

Pretrain_Bert_with_MaskLM

Info

使用Mask LM预训练任务来预训练Bert模型。

基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。

Pretraining Task

Mask Language Model,简称Mask LM,即基于Mask机制的预训练语言模型。

同时支持 原生的MaskLM任务和Whole Words Masking任务。默认使用Whole Words Masking

MaskLM

使用来自于Bert的mask机制,即对于每一个句子中的词(token):

  • 85%的概率,保留原词不变
  • 15%的概率,使用以下方式替换
    • 80%的概率,使用字符[MASK],替换当前token。
    • 10%的概率,使用词表随机抽取的token,替换当前token。
    • 10%的概率,保留原词不变。

Whole Words Masking

与MaskLM类似,但是在mask的步骤有些少不同。

在Bert类模型中,考虑到如果单独使用整个词作为词表的话,那词表就太大了。不利于模型对同类词的不同变种的特征学习,故采用了WordPiece的方式进行分词。

Whole Words Masking的方法在于,在进行mask操作时,对象变为分词前的整个词,而非子词。

Model

使用原生的Bert模型作为基准模型。

Datasets

项目里的数据集来自wikitext,分成两个文件训练集(train.txt)和测试集(test.txt)。

数据以行为单位存储。

若想要替换成自己的数据集,可以使用自己的数据集进行替换。(注意:如果是预训练中文模型,需要修改配置文件Config.py中的self.initial_pretrain_modelself.initial_pretrain_tokenizer,将值修改成 bert-base-chinese

自己的数据集不需要做mask机制处理,代码会处理。

Training Target

本项目目的在于基于现有的预训练模型参数,如google开源的bert-base-uncasedbert-base-chinese等,在垂直领域的数据语料上,再次进行预训练任务,由此提升bert的模型表征能力,换句话说,也就是提升下游任务的表现。

Environment

项目主要使用了Huggingface的datasetstransformers模块,支持CPU、单卡单机、单机多卡三种模式。

可通过以下命令安装依赖包

    pip install -r requirement.txt

主要包含的模块如下:

    python3.6
    torch==1.3.0
    tqdm==4.61.2
    transformers==4.6.1
    datasets==1.10.2
    numpy==1.19.5
    pandas==1.1.3

Get Start

单卡模式

直接运行以下命令

    python train.py

或修改Config.py文件中的变量self.cuda_visible_devices为单卡后,运行

    chmod 755 run.sh
    ./run.sh

多卡模式

如果你足够幸运,拥有了多张GPU卡,那么恭喜你,你可以进入起飞模式。 🚀 🚀

(1)使用torch的nn.parallel.DistributedDataParallel模块进行多卡训练。其中config.py文件中参数如下,默认可以不用修改。

  • self.cuda_visible_devices表示程序可见的GPU卡号,示例:1,2→可在GPU卡号为1和2上跑,亦可以改多张,如0,1,2,3
  • self.device在单卡模式,表示程序运行的卡号;在多卡模式下,表示master的主卡,默认会变成你指定卡号的第一张卡。若只有cpu,那么可修改为cpu
  • self.port表示多卡模式下,进程通信占用的端口号。(无需修改)
  • self.init_method表示多卡模式下进程的通讯地址。(无需修改)
  • self.world_size表示启动的进程数量(无需修改)。在torch==1.3.0版本下,只需指定一个进程。在1.9.0以上,需要与GPU数量相同。

(2)运行程序启动命令

    chmod 755 run.sh
    ./run.sh

Experiment

使用交叉熵(cross-entropy)作为损失函数,困惑度(perplexity)和Loss作为评价指标来进行训练,训练过程如下:

Reference

【Bert】https://arxiv.org/pdf/1810.04805.pdf

【transformers】https://github.com/huggingface/transformers

【datasets】https://huggingface.co/docs/datasets/quicktour.html

Owner
Desmond Ng
NLP Engineer
Desmond Ng
Python library for parsing resumes using natural language processing and machine learning

CVParser Python library for parsing resumes using natural language processing and machine learning. Setup Installation on Linux and Mac OS Follow the

nafiu 0 Jul 29, 2021
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022
The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models

Graformer The repository for the paper: Multilingual Translation via Grafting Pre-trained Language Models Graformer (also named BridgeTransformer in t

22 Dec 14, 2022
Contains links to publicly available datasets for modeling health outcomes using speech and language.

speech-nlp-datasets Contains links to publicly available datasets for modeling various health outcomes using speech and language. Speech-based Corpora

Tuka Alhanai 77 Dec 07, 2022
👑 spaCy building blocks and visualizers for Streamlit apps

spacy-streamlit: spaCy building blocks for Streamlit apps This package contains utilities for visualizing spaCy models and building interactive spaCy-

Explosion 620 Dec 29, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Tool to check whether a GCP bucket is public or not.

Tool to check publicly accessible GCP bucket. Blog https://justm0rph3u5.medium.com/gcp-inspector-auditing-publicly-exposed-gcp-bucket-ac6cad55618c Wha

DIVYANSHU SHUKLA 7 Nov 24, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Code has been run on Google Colab, thanks Google for providing computational resources Contents Natural Language Processing(自然语言处理) Text Classificati

1.5k Nov 14, 2022
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

Openspeech TEAM 513 Jan 03, 2023
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Example code for "Real-World Natural Language Processing"

Real-World Natural Language Processing This repository contains example code for the book "Real-World Natural Language Processing." AllenNLP (2.5.0 or

Masato Hagiwara 303 Dec 17, 2022
Large-scale Self-supervised Pre-training Across Tasks, Languages, and Modalities

Hiring We are hiring at all levels (including FTE researchers and interns)! If you are interested in working with us on NLP and large-scale pre-traine

Microsoft 7.8k Jan 09, 2023
A simple tool to update bib entries with their official information (e.g., DBLP or the ACL anthology).

Rebiber: A tool for normalizing bibtex with official info. We often cite papers using their arXiv versions without noting that they are already PUBLIS

(Bill) Yuchen Lin 2k Jan 01, 2023
A high-level yet extensible library for fast language model tuning via automatic prompt search

ruPrompts ruPrompts is a high-level yet extensible library for fast language model tuning via automatic prompt search, featuring integration with Hugg

Sber AI 37 Dec 07, 2022
A curated list of efficient attention modules

awesome-fast-attention A curated list of efficient attention modules

Sepehr Sameni 891 Dec 22, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022