The toolkit to generate auto labeled datasets

Overview

Ozeu

Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box from the recorded video files.

Installation

Requirements

  • ffmpeg
  • torch
  • mmcv-full

Example installation command for cuda11.1.

pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html

pip install mmcv-full==1.3.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

pip install git+https://github.com/open-mmlab/[email protected]

git clone [email protected]:xiong-jie-y/ozeu.git
cd ozeu
pip install -e .

Usage

1. Record Video

I recommend record video with the camera where you want to run detector. For webcam, you can use command like this.

ffmpeg -f v4l2 -framerate 60 -video_size 1280x720 -i /dev/video0 output_file.mkv

I recommend to place the object to record in a desk or somewhere on simple texture. That will reduce error rate. You can hold the object by your hand, because the dataset generator can recognize and remove hand like this.

2. Create dataset definition file.

You can write dataset definition file in yaml. Please define class names and ids at categories, and please associate class id and video paths in the datasets. The class ids will be the label of the files. video_path is relative to the dataset definition file. Video files that are supported by ffmpeg can be used.

categories:
  - id: 1
    name: alchol sheet
  - id: 2
    name: ipad
datasets:
  - category_id: 2
    video_path: IMG_4194_2.MOV
  - category_id: 2
    video_path: IMG_4195_2.MOV

3. Generate labaled coco dataset.

You can generate labaled coco dataset by giving the dataset definition file above. If you didn't hold object by hand while recording video, you can remove --remove-hand option.

python scripts/create_coco_dataset_from_videos.py  --dataset-definition-file ${DATASET_DEFINITION_FILE} --model-name u2net --output-path ${OUTPUT_DATASET_FOLDER} --resize-factor 2 --fps 15 --remove-hand

4. Generate background augmented datasets.

Please place background images at backgrounds_for_augmentation. The background augmentation script will use these files to replace background of datasets. Here we use VOC images as background images

wget https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
--2021-06-02 22:13:22--  https://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
tar xf VOCtrainval_11-May-2012.tar
mkdir backgrounds_for_augmentation
mv VOCdevkit/VOC2012/JPEGImages/* backgrounds_for_augmentation/

After preparing background images, please generate background augmented dataset by running

python scripts/generate_background_augmented_dataset.py --input-dataset-path ${DATASET_FOLDER} --destination-root ${AUGMENTED_DATASET_FOLDER} --augmentation-mode different_background

5. Merge

You can merge background augmented dataset and dataset.

python scripts/merge_coco_datasets.py --input-dirs ${AUGMENTED_DATASET_FOLDER} --input-dirs ${DATASET_FOLDER} --destination-root ${MERGED_DATASET}

6. (Optional) Import dataset into cvat.

There is the annotation tool CVAT that can accept coco format dataset. So you can import dataset into your project and fix dataset.

7. TRAIN!

TRAIN!!!

Acknowledgement

  • I wish to thank my wife, Remilia Scarlet.
  • This toolkit uses U^2 net for salient object detection. Thank you for nice model!
You might also like...
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Official PyTorch implementation of
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Asterisk is a framework to generate high-quality training datasets at scale
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can detect enemy player models in real time, during gameplay. Finally, a virtual input device will adjust the player's crosshair based on live detections for greater accuracy.

根据midi文件演奏“风物之诗琴”的脚本
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Releases(0.0.1dev4)
Owner
Xiong Jie
Software Engineer, maybe? https://twitter.com/_xiongjie_
Xiong Jie
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Instance Semantic Segmentation List

Instance Semantic Segmentation List This repository contains lists of state-or-art instance semantic segmentation works. Papers and resources are list

bighead 87 Mar 06, 2022
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022