We will release the code of "ConTNet: Why not use convolution and transformer at the same time?" in this repo

Related tags

Deep LearningConTNet
Overview

ConTNet

Introduction

ConTNet (Convlution-Tranformer Network) is proposed mainly in response to the following two issues: (1) ConvNets lack a large receptive field, limiting the performance of ConvNets on downstream tasks. (2) Transformer-based model is not robust enough and requires special training settings or hundreds of millions of images as the pretrain dataset, thereby limiting their adoption. ConTNet combines convolution and transformer alternately, which is very robust and can be optimized like ResNet unlike the recently-proposed transformer-based models (e.g., ViT, DeiT) that are sensitive to hyper-parameters and need many tricks when trained from scratch on a midsize dataset (e.g., ImageNet).

Main Results on ImageNet

name resolution [email protected] #params(M) FLOPs(G) model
Res-18 224x224 71.5 11.7 1.8
ConT-S 224x224 74.9 10.1 1.5
Res-50 224x224 77.1 25.6 4.0
ConT-M 224x224 77.6 19.2 3.1
Res-101 224x224 78.2 44.5 7.6
ConT-B 224x224 77.9 39.6 6.4
DeiT-Ti* 224x224 72.2 5.7 1.3
ConT-Ti* 224x224 74.9 5.8 0.8
Res-18* 224x224 73.2 11.7 1.8
ConT-S* 224x224 76.5 10.1 1.5
Res-50* 224x224 78.6 25.6 4.0
DeiT-S* 224x224 79.8 22.1 4.6
ConT-M* 224x224 80.2 19.2 3.1
Res-101* 224x224 80.0 44.5 7.6
DeiT-B* 224x224 81.8 86.6 17.6
ConT-B* 224x224 81.8 39.6 6.4

Note: * indicates training with strong augmentations.

Main Results on Downstream Tasks

Object detection results on COCO.

method backbone #params(M) FLOPs(G) AP APs APm APl
RetinaNet Res-50
ConTNet-M
32.0
27.0
235.6
217.2
36.5
37.9
20.4
23.0
40.3
40.6
48.1
50.4
FCOS Res-50
ConTNet-M
32.2
27.2
242.9
228.4
38.7
40.8
22.9
25.1
42.5
44.6
50.1
53.0
faster rcnn Res-50
ConTNet-M
41.5
36.6
241.0
225.6
37.4
40.0
21.2
25.4
41.0
43.0
48.1
52.0

Instance segmentation results on Cityscapes based on Mask-RCNN.

backbone APbb APsbb APmbb APlbb APmk APsmk APmmk APlmk
Res-50
ConT-M
38.2
40.5
21.9
25.1
40.9
44.4
49.5
52.7
34.7
38.1
18.3
20.9
37.4
41.0
47.2
50.3

Semantic segmentation results on cityscapes.

model mIOU
PSP-Res50 77.12
PSP-ConTM 78.28

Bib Citing

@article{yan2021contnet,
    title={ConTNet: Why not use convolution and transformer at the same time?},
    author={Haotian Yan and Zhe Li and Weijian Li and Changhu Wang and Ming Wu and Chuang Zhang},
    year={2021},
    journal={arXiv preprint arXiv:2104.13497}
}
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

Chenyu 109 Dec 23, 2022
QKeras: a quantization deep learning library for Tensorflow Keras

QKeras github.com/google/qkeras QKeras 0.8 highlights: Automatic quantization using QKeras; Stochastic behavior (including stochastic rouding) is disa

Google 437 Jan 03, 2023
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Text-to-Image generation

Generate vivid Images for Any (Chinese) text CogView is a pretrained (4B-param) transformer for text-to-image generation in general domain. Read our p

THUDM 1.3k Dec 29, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
Convolutional Neural Network for 3D meshes in PyTorch

MeshCNN in PyTorch SIGGRAPH 2019 [Paper] [Project Page] MeshCNN is a general-purpose deep neural network for 3D triangular meshes, which can be used f

Rana Hanocka 1.4k Jan 04, 2023
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022