Few-Shot Object Detection via Association and DIscrimination

Related tags

Deep LearningFADI
Overview

Few-Shot Object Detection via Association and DIscrimination

Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIscrimination.

FSCE Figure

Bibtex

@inproceedings{cao2021few,
  title={Few-Shot Object Detection via Association and DIscrimination},
  author={Cao, Yuhang and Wang, Jiaqi and Jin, Ying and Wu, Tong and Chen, Kai and Liu, Ziwei and Lin, Dahua},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Arxiv: https://arxiv.org/abs/2111.11656

Install dependencies

  • Create a new environment: conda create -n fadi python=3.8 -y
  • Active the newly created environment: conda activate fadi
  • Install PyTorch and torchvision: conda install pytorch=1.7 torchvision cudatoolkit=10.2 -c pytorch -y
  • Install MMDetection: pip install mmdet==2.11.0
  • Install MMCV: pip install mmcv==1.2.5
  • Install MMCV-Full: pip install mmcv-full==1.2.5 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.7.0/index.html

Note:

  • Only tested on MMDet==2.11.0, MMCV==1.2.5, it may not be consistent with other versions.
  • The above instructions use CUDA 10.2, make sure you install the correct PyTorch, Torchvision and MMCV-Full that are consistent with your CUDA version.

Prepare dataset

We follow exact the same split with TFA, please download the dataset and split files as follows:

Create a directory data in the root directory, and the expected structure for data directory:

data/
    VOCdevkit
    few_shot_voc_split

Training & Testing

Base Training

FADI share the same base training stage with TFA, we directly convert the corresponding checkpoints from TFA in Detectron2 format to MMDetection format, please download the base training checkpoints following the table.

Name Split
AP50
download
Base Model 1 80.8 model  | surgery
Base Model 2 81.9 model  | surgery
Base Model 3 82.0 model  | surgery

Create a directory models in the root directory, and the expected structure for models directory:

models/
    voc_split1_base.pth
    voc_split1_base_surgery.pth
    voc_split2_base.pth
    voc_split2_base_surgery.pth
    voc_split3_base.pth
    voc_split3_base_surgery.pth

Few-Shot Fine-tuning

FADI divides the few-shot fine-tuning stage into two steps, ie, association and discrimination,

Suppose we want to train a model for Pascal VOC split1, shot1 with 8 GPUs

1. Step 1: Association.

Getting the assigning scheme of the split:

python tools/associate.py 1

Aligning the feature distribution of the associated base and novel classes:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_association.py 8

2. Step 2: Discrimination

Building a discriminate feature space for novel classes with disentangling and set-specialized margin loss:

./tools/dist_train.sh configs/voc_split1/fadi_split1_shot1_discrimination.py 8

Holistically Training:

We also provide you a script tools/fadi_finetune.sh to holistically train a model for a specific split/shot by running:

./tools/fadi_finetune.sh 1 1

Evaluation

To evaluate the trained models, run

./tools/dist_test.sh configs/voc_split1/fadi_split1_shot1_discrimination.py [checkpoint] 8 --eval mAP --out res.pkl

Model Zoo

Pascal VOC split 1

Shot
nAP50
download
1 50.6 association  | discrimination
2 54.8 association  | discrimination
3 54.1 association  | discrimination
5 59.4 association  | discrimination
10 63.5 association  | discrimination

Pascal VOC split 2

Shot
nAP50
download
1 30.5 association  | discrimination
2 35.1 association  | discrimination
3 40.3 association  | discrimination
5 42.9 association  | discrimination
10 48.3 association  | discrimination

Pascal VOC split 3

Shot
nAP50
download
1 45.7 association  | discrimination
2 49.4 association  | discrimination
3 49.4 association  | discrimination
5 55.1 association  | discrimination
10 59.3 association  | discrimination
Owner
Cao Yuhang
Cao Yuhang
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Modular Gaussian Processes

Modular Gaussian Processes for Transfer Learning 🧩 Introduction This repository contains the implementation of our paper Modular Gaussian Processes f

Pablo Moreno-Muñoz 10 Mar 15, 2022
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023