RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

Related tags

Deep LearningRE3
Overview

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021)

Code for State Entropy Maximization with Random Encoders for Efficient Exploration.

In this repository, we provide code for RE3 algorithm described in the paper linked above. We provide code in three sub-directories: rad_re3 containing code for the combination of RE3 and RAD, dreamer_re3 containing code for the combination of RE3 and Dreamer, and a2c_re3 containing code for the combination of RE3 and A2C.

We also provide raw data(.csv) and code for visualization in the data directory.

If you find this repository useful for your research, please cite:

@inproceedings{seo2021state,
  title={State Entropy Maximization with Random Encoders for Efficient Exploration},
  author={Seo, Younggyo and Chen, Lili and Shin, Jinwoo and Lee, Honglak and Abbeel, Pieter and Lee, Kimin},
  booktitle={International Conference on Machine Learning},
  year={2021}
}

RAD + RE3

Our code is built on top of the DrQ repository.

Installation

You could install all dependencies by following command:

conda env install -f conda_env.yml

You should also install custom version of dm_control to run experiments on Walker Run Sparse and Cheetah Run Sparse. You could do this by following command:

cd ../envs/dm_control
pip install .

Instructions

RAD

python train.py env=hopper_hop batch_size=512 action_repeat=2 logdir=runs_rad_re3 use_state_entropy=false

RAD + RE3

python train.py env=hopper_hop batch_size=512 action_repeat=2 logdir=runs_rad_re3

We provide all scripts to reproduce Figure 4 (RAD, RAD + RE3) in scripts directory.

Dreamer + RE3

Our code is built on top of the Dreamer repository.

Installation

You could install all dependencies by following command:

pip3 install --user tensorflow-gpu==2.2.0
pip3 install --user tensorflow_probability
pip3 install --user git+git://github.com/deepmind/dm_control.git
pip3 install --user pandas
pip3 install --user matplotlib

# Install custom dm_control environments for walker_run_sparse / cheetah_run_sparse
cd ../envs/dm_control
pip3 install .

Instructions

Dreamer

python dreamer.py --logdir ./logdir/dmc_pendulum_swingup/dreamer/12345 --task dmc_pendulum_swingup --precision 32 --beta 0.0 --seed 12345

Dreamer + RE3

python dreamer.py --logdir ./logdir/dmc_pendulum_swingup/dreamer_re3/12345 --task dmc_pendulum_swingup --precision 32 --k 53 --beta 0.1 --seed 12345

We provide all scripts to reproduce Figure 4 (Dreamer, Dreamer + RE3) in scripts directory.

A2C + RE3

Training code can be found in rl-starter-files directory, which is forked from rl-starter-files, which uses a modified A2C implementation from torch-ac. Note that currently there is only support for A2C.

Installation

All of the dependencies are in the requirements.txt file in rl-starter-files. They can be installed manually or with the following command:

pip3 install -r requirements.txt

You will also need to install our cloned version of torch-ac with these commands:

cd torch-ac
pip3 install -e .

Instructions

See instructions in rl-starter-files directory. Example scripts can be found in rl-starter-files/rl-starter-files/run_sent.sh.

Owner
Younggyo Seo
Ph.D Student @ Graduate School of AI, KAIST
Younggyo Seo
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
RL algorithm PPO and IRL algorithm AIRL written with Tensorflow.

RL algorithm PPO and IRL algorithm AIRL written with Tensorflow. They have a parallel sampling feature in order to increase computation speed (especially in high-performance computing (HPC)).

Fangjian Li 3 Dec 28, 2021
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
This project provides a stock market environment using OpenGym with Deep Q-learning and Policy Gradient.

Stock Trading Market OpenAI Gym Environment with Deep Reinforcement Learning using Keras Overview This project provides a general environment for stoc

Kim, Ki Hyun 769 Dec 25, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022