GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

Related tags

Text Data & NLPGCRC
Overview

GCRC

GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Evaluation

Introduction

Currently, machine reading comprehension models have made exciting progress, driven by a large number of publicly available data sets. However, the real language comprehension capabilities of models are far from what people expect, and most of the data sets provide black-box evaluations that fail to diagnose whether the system is based on correct reasoning processes. In order to alleviate these problems and promote machine intelligence to humanoid intelligence, Shanxi University focuses on the more diverse and challenging reading comprehension tasks of the college entrance examination, and attempts to evaluate machine intelligence effectively and practically based on standardized human tests. We collected gaokao reading comprehension test questions in the past 10 years and constructed a datasets which is GCRC(A New MRC Dataset from Gaokao Chinese for Explainable Evaluation) containing more than 5000 texts and more than 8,700 multiple-choice questions (about 15,000 options). The datasets is annotated three kinds of information: the sentence level support fact, interference item’s error cause and the reasoning skills required to answer questions. Related experiments show that this datasets is more challenging, which is very useful for diagnosing system limitations in an interpretable manner, and will help researchers develop new machine learning and reasoning methods to solve these challenging problems in the future.

Leaderboard

GCRC Leaderboard for Explainable Evaluation

Paper

GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Evaluation. ACL 2021 Findings.

Data Size

Train:6,994 questions;Dev:863 questions;Test:862 questions

Data Format

Each instance is composed of id (id, a string), title (title, a string), passage (passage, a string), question(question, a string), options (options, a list, representing the contents of A, B, C, and D, respectively), evidences (evidences, a list, representing the contents of the supporting sentence in the original text of A, B, C and D, respectively), reasoning_ability(reasoning_ability, a list,representing the reasoning ability required to answer questions of A, B, C and D, respectively), error_type (error_type, a list, representing the Error reason of A, B, C and D, respectively), answer(answer,a string).

Example

{
  "id": "gcrc_4916_8172", 
  "title": "我们需要怎样的科学素养", 
  "passage": "第八次中国公民科学素养调查显示,2010年,我国具备...激励科技创新、促进创新型国家建设,我们任重道远。", 
  "question": "下列对“我们需要怎样的科学素养”的概括,不正确的一项是", 
  "options":  [
    "科学素养是一项基本公民素质,公民科学素养可以从科学知识、科学方法和科学精神三个方面来衡量。",
    "不仅需要掌握足够的科学知识、科学方法,更需要具备学习、理解、表达、参与和决策科学事务的能力。",
    "应该明白科学技术需要控制,期望科学技术解决哪些问题,希望所纳的税费使用于科学技术的哪些方面。", 
    "需要具备科学的思维和科学的精神,对科学技术能持怀疑态度,对于媒体信息具有质疑精神和过滤功能。"
  ],
  "evidences": [
    ["公民科学素养可以从三个方面衡量:科学知识、科学方法和科学精神。", "在“建设创新型国家”的语境中,科学素养作为一项基本公民素质的重要性不言而喻。"],
    ["一个具备科学素养的公民,不仅应该掌握足够的科学知识、科学方法,更需要强调科学的思维、科学的精神,理性认识科技应用到社会中可能产生的影响,进而具备学习、理解、表达、参与和决策科学事务的能力。"], 
    ["西方发达国家不仅测试公众对科学技术与社会、经济、文化等各方面关系的看法,更考察公众对科学技术是否持怀疑态度,是否认为科学技术需要控制,期望科学技术解决哪些问题,希望所纳的税费使用于科学技术的哪些方面等。"], 
    ["甚至还有国家专门测试公众对于媒体信息是否具有质疑精神和过滤功能。", "西方发达国家不仅测试公众对科学技术与社会、经济、文化等各方面关系的看法,更考察公众对科学技术是否持怀疑态度,是否认为科学技术需要控制,期望科学技术解决哪些问题,希望所纳的税费使用于科学技术的哪些方面等。"]
   ],
  "error_type": ["E", "", "", ""],
  "answer": "A",
}

Evaluation Code

The prediction result needs to be consistent with the format of the training set.

python eval.py prediction_file test_private_file

Participants are required to complete the following tasks: Task 1: Output the answer to the question. Task 2: Output the sentence-level supporting facts(SFs) that support the answer to the question, that is, the original supporting sentences for each option. Task 3: Output the error cause of the interference option. There are 7 reasons for the error in this evaluation: 1) Wrong details; 2) Wrong temporal properties; 3) Wrong subject-predicate-object triple relationship; 4) Wrong necessary and sufficient conditions; 5) Wrong causality; 6) Irrelevant to the question; 7) Irrelevant to the article. The evaluation metrics are Task1_Acc, Task2_F1,Task3_Acc(The accuracy of error reason identification),and the output is in dictionary format.

return {"Task1_Acc":_, " Task2_F1":_, "Task3_Acc":_}

Author List

Hongye Tan, Xiaoyue Wang, Yu Ji, Ru Li, Xiaoli Li, Zhiwei Hu, Yunxiao Zhao, Xiaoqi Han.

Institutions

Shanxi University

Citation

Please kindly cite our paper if the work is helpful.

@inproceedings{tan-etal-2021-gcrc,
    title = "{GCRC}: A New Challenging {MRC} Dataset from {G}aokao {C}hinese for Explainable Evaluation",
    author = "Tan, Hongye  and
      Wang, Xiaoyue  and
      Ji, Yu  and
      Li, Ru  and
      Li, Xiaoli  and
      Hu, Zhiwei  and
      Zhao, Yunxiao  and
      Han, Xiaoqi",
    booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.findings-acl.113",
    doi = "10.18653/v1/2021.findings-acl.113",
    pages = "1319--1330",
}
Owner
Yunxiao Zhao
Yunxiao Zhao
A music comments dataset, containing 39,051 comments for 27,384 songs.

Music Comments Dataset A music comments dataset, containing 39,051 comments for 27,384 songs. For academic research use only. Introduction This datase

Zhang Yixiao 2 Jan 10, 2022
Research code for ECCV 2020 paper "UNITER: UNiversal Image-TExt Representation Learning"

UNITER: UNiversal Image-TExt Representation Learning This is the official repository of UNITER (ECCV 2020). This repository currently supports finetun

Yen-Chun Chen 680 Dec 24, 2022
An easy to use Natural Language Processing library and framework for predicting, training, fine-tuning, and serving up state-of-the-art NLP models.

Welcome to AdaptNLP A high level framework and library for running, training, and deploying state-of-the-art Natural Language Processing (NLP) models

Novetta 407 Jan 03, 2023
Sploitus - Command line search tool for sploitus.com. Think searchsploit, but with more POCs

Sploitus Command line search tool for sploitus.com. Think searchsploit, but with

watchdog2000 5 Mar 07, 2022
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Associated Repository for "Translation between Molecules and Natural Language"

MolT5: Translation between Molecules and Natural Language Associated repository for "Translation between Molecules and Natural Language". Table of Con

67 Dec 15, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Anomaly Detection 이상치 탐지 전처리 모듈

Anomaly Detection 시계열 데이터에 대한 이상치 탐지 1. Kernel Density Estimation을 활용한 이상치 탐지 train_data_path와 test_data_path에 존재하는 시점 정보를 포함하고 있는 csv 형태의 train data와

CLUST-consortium 43 Nov 28, 2022
Text editor on python to convert english text to malayalam(Romanization/Transiteration).

Manglish Text Editor This is a simple transiteration (romanization ) program which is used to convert manglish to malayalam (converts njaan to ഞാൻ ).

Merin Rose Tom 1 May 11, 2022
Club chatbot

Chatbot Club chatbot Instructions to get the Chatterbot working Step 1. First make sure you are using a version of Python 3 or newer. To check your ve

5 Mar 07, 2022
Repo for Enhanced Seq2Seq Autoencoder via Contrastive Learning for Abstractive Text Summarization

ESACL: Enhanced Seq2Seq Autoencoder via Contrastive Learning for AbstractiveText Summarization This repo is for our paper "Enhanced Seq2Seq Autoencode

Rachel Zheng 14 Nov 01, 2022
A python script that will use hydra to get user and password to login to ssh, ftp, and telnet

Hydra-Auto-Hack A python script that will use hydra to get user and password to login to ssh, ftp, and telnet Project Description This python script w

2 Jan 16, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models

IMS-Toucan is a toolkit to train state-of-the-art Speech Synthesis models. Everything is pure Python and PyTorch based to keep it as simple and beginner-friendly, yet powerful as possible.

Digital Phonetics at the University of Stuttgart 247 Jan 05, 2023
Türkçe küfürlü içerikleri bulan bir yapay zeka kütüphanesi / An ML library for profanity detection in Turkish sentences

"Kötü söz sahibine aittir." -Anonim Nedir? sinkaf uygunsuz yorumların bulunmasını sağlayan bir python kütüphanesidir. Farkı nedir? Diğer algoritmalard

KaraGoz 4 Feb 18, 2022
Common Voice Dataset explorer

Common Voice Dataset Explorer Common Voice Dataset is by Mozilla Made during huggingface finetuning week Usage pip install -r requirements.txt streaml

Ceyda Cinarel 22 Nov 16, 2022
Text preprocessing, representation and visualization from zero to hero.

Text preprocessing, representation and visualization from zero to hero. From zero to hero • Installation • Getting Started • Examples • API • FAQ • Co

Jonathan Besomi 2.7k Jan 08, 2023
spaCy plugin for Transformers , Udify, ELmo, etc.

Camphr - spaCy plugin for Transformers, Udify, Elmo, etc. Camphr is a Natural Language Processing library that helps in seamless integration for a wid

342 Nov 21, 2022
Course project of [email protected]

NaiveMT Prepare Clone this repository git clone [email protected]:Poeroz/NaiveMT.git

Poeroz 2 Apr 24, 2022