Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Related tags

Deep LearningIALS
Overview

Instance-Aware Latent-Space Search

This is a PyTorch implementation of the following paper:

Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, IJCAI 2021.

Yuxuan Han, Jiaolong Yang and Ying Fu

Paper: https://arxiv.org/abs/2105.12660.

Abstract: Recent works have shown that a rich set of semantic directions exist in the latent space of Generative Adversarial Networks (GANs), which enables various facial attribute editing applications. However, existing methods may suffer poor attribute variation disentanglement, leading to unwanted change of other attributes when altering the desired one. The semantic directions used by existing methods are at attribute level, which are difficult to model complex attribute correlations, especially in the presence of attribute distribution bias in GAN’s training set. In this paper, we propose a novel framework (IALS) that performs Instance-Aware Latent-Space Search to find semantic directions for disentangled attribute editing. The instance information is injected by leveraging the supervision from a set of attribute classifiers evaluated on the input images. We further propose a Disentanglement-Transformation (DT) metric to quantify the attribute transformation and disentanglement efficacy and find the optimal control factor between attribute-level and instance-specific directions based on it. Experimental results on both GAN-generated and real-world images collectively show that our method outperforms state-of-the-art methods proposed recently by a wide margin.

Requirements

It's quite easy to create the environment for our model, you only need:

  • Python 3.7 and the basic Anaconda3 environment.
  • PyTorch 1.x with GPU support (a single NVIDIA GTX 1060 is enough).
  • The tqdm library to visualize the progress bar.

Reproduce Results

Download the pretrain directory from here and put it on the root directory of this repository. If your environment meets our requirements, you will see an editing result in test_env.jpg using the following command.

python edit_single_attr.py --seed 0 --step 0.5 --n_steps 4 --dataset ffhq --base interfacegan --attr male --save_path test_env.jpg
  • Edit a random image generated by StyleGAN. You can specify the primal and condition attributes and the seed. Here we set gender as the primal attribute and expression as the condition attribute.
# reproduce our results:
python condition_manipulation.py --seed 0 --step 0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 0.75 --lambda2 0 --real_image 0 --save_path rand-ours.jpg

# reproduce interfacegan results:
python condition_manipulation.py --seed 0 --step 0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 1 --lambda2 1 --real_image 0 --save_path rand-inter.jpg
  • Edit a real face image via our instance-aware direction. In the pretrain\real_latent_code folder we put lots of pretrained latent code provided by seeprettyface. If you want to edit customized face images, please refer to the next section. Note: If lambda1=lambda2=1, our method degrades to the attribute-level semantic direction based methods like InterfaceGAN and GANSpace.
# reproduce our results:
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 young --attr2 eyeglasses --lambda1 0.75 --lambda2 0 --real_image 1 --latent_code_path pretrain\real_latent_code\real1.npy --save_path real-ours.jpg

# reproduce interfacegan results: 
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 30 --dataset ffhq --base interfacegan --attr1 young --attr2 eyeglasses --lambda1 1 --lambda2 1 --real_image 1 --latent_code_path pretrain\real_latent_code\real1.npy --save_path real-inter.jpg
  • Compute the attribute-level direction by average the instance-specific direction.
python train_attr_level_direction.py --n_images 500 --attr pose

Editing Your Own Image

Typically you need to follow the steps below:

  1. Obtain the latent code of the real image via GAN Inversion. Here we provide a simple baseline GAN-Inversion method in gan_inversion.py.
python gan_inversion.py --n_iters 500 --img_path image\real_face_sample.jpg
  1. Editing the real face image's latent code with our method.
python condition_manipulation.py --seed 0 --step -0.1 --n_steps 10 --dataset ffhq --base interfacegan --attr1 male --attr2 smiling --lambda1 0.75 --lambda2 0 --real_image 1 --latent_code_path rec.npy --save_path real-ours.jpg

You will see the result like that:

To improve the editing quality, we highly recommand you to use the state-of-the-art GAN inversion method like Id-Invert or pixel2image2pixel. Note: You need to make sure that these GAN inversion methods use the same pretrained StyleGAN weights as us.

Contact

If you have any questions, please contact Yuxuan Han ([email protected]).

Citation

Please cite the following paper if this model helps your research:

@inproceedings{han2021IALS,
    title={Disentangled Face Attribute Editing via Instance-Aware Latent Space Search},
    author={Yuxuan Han, Jiaolong Yang and Ying Fu},
    booktitle={International Joint Conference on Artificial Intelligence},
    year={2021}
}

Acknowledgments

This code borrows the StyleGAN generator implementation from https://github.com/lernapparat/lernapparat and uses the pretrained real image's latent code provided by http://www.seeprettyface.com/index_page6.html. We thank for their great effort!

Owner
Currently a junior student at BIT, interested in computer vision and graphics.
SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

SCALoss PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022). Introduction IoU-based lo

TuZheng 20 Sep 07, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Defending against Model Stealing via Verifying Embedded External Features

Defending against Model Stealing Attacks via Verifying Embedded External Features This is the official implementation of our paper Defending against M

20 Dec 30, 2022
Dataloader tools for language modelling

Installation: pip install lm_dataloader Design Philosophy A library to unify lm dataloading at large scale Simple interface, any tokenizer can be inte

5 Mar 25, 2022
Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System

Does Oversizing Improve Prosumer Profitability in a Flexibility Market? - A Sensitivity Analysis using PV-battery System The possibilities to involve

Babu Kumaran Nalini 0 Nov 19, 2021
This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

This reporistory contains the test-dev data of the paper "xGQA: Cross-lingual Visual Question Answering".

AdapterHub 18 Dec 09, 2022
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
ChatBot-Pytorch - A GPT-2 ChatBot implemented using Pytorch and Huggingface-transformers

ChatBot-Pytorch A GPT-2 ChatBot implemented using Pytorch and Huggingface-transf

ParZival 42 Dec 09, 2022
A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code for training a DPR model then continuing training with RAG.

KGI (Knowledge Graph Induction) for slot filling This is the code for our KILT leaderboard submission to the T-REx and zsRE tasks. It includes code fo

International Business Machines 72 Jan 06, 2023
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
"SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image", Dejia Xu, Yifan Jiang, Peihao Wang, Zhiwen Fan, Humphrey Shi, Zhangyang Wang

SinNeRF: Training Neural Radiance Fields on Complex Scenes from a Single Image [Paper] [Website] Pipeline Code Environment pip install -r requirements

VITA 250 Jan 05, 2023