Jingju baseline - A baseline model of our project of Beijing opera script generation

Overview

Jingju Baseline

It is a baseline of our project about Beijing opera script generation. Our baseline model is based on gpt2-chinese-ancient which is pretrained with 1.5GB literary Chinese.Please refer to our paper for details.

Directory Annotation

jingju_baseline/
	|-- finetuning.py 	#the finetuning script
	|-- jingju_test.py 	#test script
	|-- preprocess.py 	#data preprocess script
	|-- config/ 		#model configuration files 
	|-- corpora/ 		#corpora files
	|-- models/ 		# vocab file, model checkpoints and some necessary files
	|-- scripts/ 		# several functional scripts
	|-- test/ 		#test files
	|-- uer/ 		#files from UER-py

Environment Preparation

Our baseline model is fineturned with a pretraining framework UER-py. Refer to the part for environment requirements.

Finetuning

  1. Data preprocess
python3 preprocess.py --corpus_path corpora/jingju_train.txt\
   	  --vocab_path models/vocab.txt \
   	  --tokenizer bert \
   	  --dataset_path corpora/jingju_train.pt \
   	  --processes_num 32 --seq_length 1024 --target lm
python3 preprocess.py --corpus_path corpora/jingju_dev.txt\
   	  --vocab_path models/vocab.txt \
   	  --tokenizer bert \
   	  --dataset_path corpora/jingju_dev.pt \
   	  --processes_num 32 --seq_length 1024 --target lm
  1. Finetuning
export CUDA_VISIBLE_DEVICES=0
nohup python3 -u finetuning.py --dataset_path corpora/jingju_train.pt\
		 --devset_path corpora/jingju_dev.pt\
		 --vocab_path models/vocab.txt \
		 --config_path config/jingju_config.json \
		 --output_model_path models/finetuned_model.bin\
		 --pretrained_model_path models/uer-ancient-chinese.bin\
		 --world_size 1 --gpu_ranks 0  \
		 --total_steps 100000 --save_checkpoint_steps 50000\
		 --report_steps 1000 --learning_rate 5e-5\
		 --batch_size 5 --accumulation_steps 4 \
		 --embedding word_pos  --fp16 --fp16_opt_level O1 \
		 --remove_embedding_layernorm --encoder transformer \
		 --mask causal --layernorm_positioning pre \
		 --target lm --tie_weights > fineturning.log 2>&1 &

Refer to here for function of every argument.

Specificly, you may change environment variable CUDA_VISIBLE_DEVICES and --world_size paired with --gpu_ranks option for multi-GPU training. To enable --fp16 coordinated with --fp16_opt_level needs apex.

Test

You can finetuning by yourself with instructions above, or download the checkpoint(extracting code: q0yn) to directory ./models Then run as follows:

python3 preprocess.py --corpus_path corpora/jingju_test.txt\
		  --vocab_path models/vocab.txt \
		  --tokenizer bert \
		  --dataset_path corpora/jingju_test.pt \
		  --processes_num 32 --seq_length 1024 --target lm
nohup python3 -u jingju_test.py --load_model_path models/finetuned_model.bin-100000 \
		--vocab_path models/vocab.txt \
		--beginning_path test/jingju_beginning.txt  \
		--reference_path test/jingju_reference.txt \
		--prediction_path test/jingju_candidates.txt \
		--test_path test/jingju_beginning.txt \
		--testset_path datasets/jingju_test.pt \
		--config_path config/jingju_config.json \
		--seq_length 1024 --embedding word_pos \
		--remove_embedding_layernorm \
		--encoder transformer --mask causal \
		--layernorm_positioning pre --target lm \
		--tie_weights > test_candidate_generation.log 2>&1 &

The automatic mertics(i.e., F1, Perplexity, BLEU and Distinct) will be displayed on stdout.

Generation

nohup python3 -u scripts/generate_lm.py \
		--load_model_path models/finetuned_model.bin-100000 \
		--vocab_path models/vocab.txt \
		--test_path test/beginning.txt \
		--prediction_path test/generation.txt \
		--config_path config/jingju_config.json \
		--seq_length 1024 --embedding word_pos \
		--remove_embedding_layernorm --encoder transformer \
		--mask causal --layernorm_positioning pre \
		--target lm --tie_weights > generation_log.log 2>&1 &

Given the beginning, the model will generates script corresponding with it. The generate_lm.py script only generates sequence no longer than 1024. If you want longer script, replace scripts/generate_lm.py with scripts/long_generate_lm.py and revise --seq_length to the length you desire. Note that the generation procedure employs auto-regressive fashion, so generating long sequence is a time-consuming process.

Citation

@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}
@article{radford2019language,
  title={Language Models are Unsupervised Multitask Learners},
  author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},
  year={2019}
}
Owner
midon
master from School of Informatics,Xiamen University
midon
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
A python interface for training Reinforcement Learning bots to battle on pokemon showdown

The pokemon showdown Python environment A Python interface to create battling pokemon agents. poke-env offers an easy-to-use interface for creating ru

Haris Sahovic 184 Dec 30, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera.

Tools to create pixel-wise object masks, bounding box labels (2D and 3D) and 3D object model (PLY triangle mesh) for object sequences filmed with an RGB-D camera. This project prepares training and t

305 Dec 16, 2022
Plenoxels: Radiance Fields without Neural Networks

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Sara Fridovich-Keil 81 Dec 25, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
MISSFormer: An Effective Medical Image Segmentation Transformer

MISSFormer Code for paper "MISSFormer: An Effective Medical Image Segmentation Transformer". Please read our preprint at the following link: paper_add

Fong 22 Dec 24, 2022
PySLM Python Library for Selective Laser Melting and Additive Manufacturing

PySLM Python Library for Selective Laser Melting and Additive Manufacturing PySLM is a Python library for supporting development of input files used i

Dr Luke Parry 35 Dec 27, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
Deep learning image registration library for PyTorch

TorchIR: Pytorch Image Registration TorchIR is a image registration library for deep learning image registration (DLIR). I have integrated several ide

Bob de Vos 40 Dec 16, 2022
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Code for Ditto: Building Digital Twins of Articulated Objects from Interaction

Ditto: Building Digital Twins of Articulated Objects from Interaction Zhenyu Jiang, Cheng-Chun Hsu, Yuke Zhu CVPR 2022, Oral Project | arxiv News 2022

UT Robot Perception and Learning Lab 78 Dec 22, 2022