A repo for open resources & information for people to succeed in PhD in CS & career in AI / NLP

Overview

Resources to Help Global Equality for PhDs in NLP / AI

This repo originates with a wish to promote Global Equality for people who want to do a PhD in NLP, following the idea that mentorship programs are an effective way to fight against segregation, according to The Human Networks (Jackson, 2019). Specifically, we wish people from all over the world and with all types of backgrounds can share the same source of information, so that success will be a reward to those who are determined and hardworking, regardless of external contrainsts.

One non-negligible reason for success is access to information, such as (1) knowing what a PhD in NLP is like, (2) knowing what top grad schools look for when reviewing PhD applications, (3) broadening your horizon of what is good work, (4) knowing how careers in NLP in both academia and industry are like, and many others.

Contributor: Zhijing Jin (PhD student in NLP at Max Planck Institute, co-organizer of the ACL Year-Round Mentorship Program).

You are welcome to be a collaborator, -- you can make an issue/pull request, and I can add you :).

Endorsers of this repo: Prof Rada Mihalcea (University of Michigan). Please add your name here (by a pull request) if you endorse this repo :).

Contents (Actively Updating)

Top Resources

  1. Online ACL Year-Round Mentorship Program: https://acl-mentorship.github.io (You can apply as a mentee, as a mentor, or as a volunteer. For mentees, you will be able to attend monthly zoom Q&A sessions hosted senior researchers in NLP. You will also join a global slack channel, where you can constantly post your questions, and we will collect answers from senior NLP researchers.)

Stage 1. (Non-PhD -> PhD) How to Apply to PhD?

  1. (Prof Philip [email protected]) Finding CS Ph.D. programs to apply to. [Video]

  2. (Prof Mor Harchol-Balter@CMU) Applying to Ph.D. Programs in Computer Science (2014). [Guide]

  3. (Prof Jason [email protected]) Advice for Research Students (last updated: 2021). [List of suggestions]

  4. (CS Rankings) Advice on Applying to Grad School in Computer Science. [Pointers]

  5. (Nelson Liu, [email protected]) Student Perspectives on Applying to NLP PhD Programs (2019). [Suggestions Based on Surveys]

  6. A Princeton CS Major's Guide to Applying to Graduate School. [List of suggestions]

  7. (John Hewitt, [email protected]) Undergrad to PhD, or not - advice for undergrads interested in research (2018). [Suggestions]

  8. (Kalpesh Krishna, [email protected] Amherst) Grad School Resources (2018). [Article] (This list lots of useful pointers!)

  9. (Prof Scott E. [email protected]) Quora answers on the LTI program at CMU (2017). [Article]

  10. (Albert Webson et al., [email protected] University) Resources for Underrepresented Groups, including Brown's Own Applicant Mentorship Program (2020, but we will keep updating it throughout the 2021 application season.) [List of Resources]

Specific Suggestions

  1. (Prof Nathan [email protected] University) Inside Ph.D. admissions: What readers look for in a Statement of Purpose. [Article]

Improve Your Proficiency with Tools

  1. (MIT 2020) The Missing Semester of Your CS Education (e.g., master the command-line, ssh into remote machines, use fancy features of version control systems).

Stage 2. (Doing PhD) How to Succeed in PhD?

  1. (Maxwell Forbes, [email protected]) Every PhD Is Different. [Suggestions]

  2. (Prof Mark [email protected], Prof Hanna M. [email protected] Amherst) How to be a successful PhD student (in computer science (in NLP/ML)). [Suggestions]

  3. (Andrej Karpathy) A Survival Guide to a PhD (2016). [Suggestions]

  4. (Prof Kevin [email protected]) Kevin Gimpel's Advice to PhD Students. [Suggestions]

  5. (Prof Marie [email protected] University) How to Succeed in Graduate School: A Guide for Students and Advisors (1994). [Article] [Part II]

  6. (Prof Eric [email protected]) Syllabus for Eric’s PhD students (incl. Prof's expectation for PhD students). [syllabus]

  7. (Prof H.T. [email protected]) Useful Thoughts about Research (1987). [Suggestions]

  8. (Prof Phil [email protected]) Networking on the Network: A Guide to Professional Skills for PhD Students (last updated: 2015). [Suggestions]

  9. (Prof Stephen C. [email protected]) Some Modest Advice for Graduate Students. [Article]

  10. (Prof Tao [email protected]) Graduate Student Survival/Success Guide. [Slides]

  11. (Mu [email protected]) 博士这五年 (A Chinese article about five years in PhD at CMU). [Article]

  12. (Karl Stratos) A Note to a Prospective Student. [Suggestions]

What Is Weekly Meeting with Advisors like?

  1. (Prof Jason [email protected]) What do PhD students talk about in their once-a-week meetings with their advisers during their first year? (2015). [Article]

  2. (Brown University) Guide to Meetings with Your Advisor. [Suggestions]

Practical Guides

  1. (Prof Srinivasan [email protected]) How to Read a Paper (2007). [Suggestions]

  2. (Prof Jason [email protected]) How to Read a Technical Paper (2009). [Suggestions]

  3. (Prof Jason [email protected]) How to write a paper? (2010). [Suggestions]

Memoir-Like Narratives

  1. (Prof Philip [email protected]) The Ph.D. Grind: A Ph.D. Student Memoir (last updated: 2015). [Video] (For the book, you have to dig deeply, and then you will find the book.)

  2. (Prof Tianqi [email protected]) 陈天奇:机器学习科研的十年 (2019) (A Chinese article about ten years of research in ML). [Article]

  3. (Jean Yang) What My PhD Was Like. [Article]

How to Excel Your Research

  1. The most important step: (Prof Jason [email protected]) How to Find Research Problems (1997). [Suggestions]

Grad School Fellowships

  1. (List compiled by CMU) Graduate Fellowship Opportunities [link]
  2. CYD Fellowship for Grad Students in Switzerland [link]

Other Books

  1. The craft of Research by Wayne Booth, Greg Colomb and Joseph Williams.

  2. How to write a better thesis by Paul Gruba and David Evans

  3. Helping Doctoral Students to write by Barbara Kamler and Pat Thomson

  4. The unwritten rules of PhD research by Marian Petre and Gordon Rugg

Stage 3. (After PhD -> Industry) How is life as an industry researcher?

  1. (Mu [email protected]) 工作五年反思 (A Chinese article about reflections on the five years working in industry). [Article]

Stage 4. (Being a Prof) How to get an academic position? And how to be a good prof?

  1. (Prof Jason [email protected]) How to write an academic research statement (when applying for a faculty job) (2017). [Article]

  2. (Prof Jason [email protected]) How to Give a Talk (2015). [Suggestions]

  3. (Prof Jason [email protected]) Teaching Philosophy. [Article]

Stage 5. (Whole Career Path) How to live out a life career as an NLP research?

  1. (Prof Charles [email protected] University, Prof Qiang [email protected])Crafting Your Research Future: A Guide to Successful Master's and Ph.D. Degrees in Science & Engineering. [Book]

Further Readings: Technical Materials to Improve Your NLP Research Skills

  1. (Prof Jason [email protected]) Technical Tutorials, Notes, and Suggested Reading (last updated: 2018) [Reading list]

Contributions

All types of contributions to this resource list is welcome. Feel free to open a Pull Request.

Contact: Zhijing Jin, PhD in NLP at Max Planck Institute for Intelligent Systems, working on NLP & Causality.

How to Cite This Repo

@misc{resources2021jin,
  author = {Zhijing Jin},
  title = {Resources to Help Global Equality for PhDs in NLP},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/zhijing-jin/nlp-phd-global-equality}}
}
Owner
PhD in NLP & Causality. Affiliated with Max Planck Institute, Germany & ETH & UMich. Supervised by Bernhard Schoelkopf, Rada Mihalcea, and Mrinmaya Sachan.
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
PyTorch Implementation of "Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging" (Findings of ACL 2022)

Feature_CRF_AE Feature_CRF_AE provides a implementation of Bridging Pre-trained Language Models and Hand-crafted Features for Unsupervised POS Tagging

Jacob Zhou 6 Apr 29, 2022
HAIS_2GNN: 3D Visual Grounding with Graph and Attention

HAIS_2GNN: 3D Visual Grounding with Graph and Attention This repository is for the HAIS_2GNN research project. Tao Gu, Yue Chen Introduction The motiv

Yue Chen 1 Nov 26, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
端到端的长本文摘要模型(法研杯2020司法摘要赛道)

端到端的长文本摘要模型(法研杯2020司法摘要赛道)

苏剑林(Jianlin Su) 334 Jan 08, 2023
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
Ray-based parallel data preprocessing for NLP and ML.

Wrangl Ray-based parallel data preprocessing for NLP and ML. pip install wrangl # for latest pip install git+https://github.com/vzhong/wrangl See exa

Victor Zhong 33 Dec 27, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 08, 2023
NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Artefact 114 Dec 15, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
Utility for Google Text-To-Speech batch audio files generator. Ideal for prompt files creation with Google voices for application in offline IVRs

Google Text-To-Speech Batch Prompt File Maker Are you in the need of IVR prompts, but you have no voice actors? Let Google talk your prompts like a pr

Ponchotitlán 1 Aug 19, 2021
A collection of models for image - text generation in ACM MM 2021.

Bi-directional Image and Text Generation UMT-BITG (image & text generator) Unifying Multimodal Transformer for Bi-directional Image and Text Generatio

Multimedia Research 63 Oct 30, 2022
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search

LightSpeech UnOfficial PyTorch implementation of LightSpeech: Lightweight and Fast Text to Speech with Neural Architecture Search.

Rishikesh (ऋषिकेश) 54 Dec 03, 2022
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022