Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Overview

Principled S2R Dehazing

This repository contains the official implementation for PSD Framework introduced in the following paper:

PSD: Principled Synthetic to Real Dehazing Guided by Physical Priors
Zeyuan Chen, Yangchao Wang, Yang Yang, Dong Liu
CVPR 2021 (Oral)

Citation

If you find our work useful in your research, please cite:

@InProceedings{Chen_2021_CVPR,
    author    = {Chen, Zeyuan and Wang, Yangchao and Yang, Yang and Liu, Dong},
    title     = {PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {7180-7189}
}

Environment

  • Python 3.6
  • Pytorch 1.3.0

Pre-trained Model

Model File size Download
PSD-MSBDN 126M Google Drive
PSD-FFANET 24M Google Drive
PSD-GCANET 9M Google Drive

百度网盘链接: https://pan.baidu.com/s/1M1RO5AZaYcZtckb-OzfXgw (提取码: ixcz)

In the paper, all the qualitative results and most visual comparisons are produced by PSD-MSBDN model.

Testing

python test.py
  • Note that the test.py file is hard coded, and the default code is for the testing of PSD-FFANET model. If you want to test the other two models, you need to modify the code. See annotations in test.py and it would only take seconds.
  • If the program reports an error when going through A-Net, please make sure that your PyTorch version is 1.3.0. You could also solve the problem by resize the input of A-Net to 512×512 or delete A-Net (only for testing). See issue #5 for more information.

Train Custom Model by PSD

Modify the network:

As most existing dehazing models are end-to-end, you are supposed to modify the network to make it a physics-baesd one.

To be specific, take GCANet as an example. In its GCANet.py file, the variable y in Line 96 is the final feature map. You should replace the final deconv layer by two branches for transmission maps and dehazing results, separately. The branch can be consisted of two simple convolutional layers. In addition, you should also add an A-Net to generate atmosphere light.

Pre-Training:

With the modified Network, you can do the pre-train phase with synthetic data. In our settings, we use OTS from RESIDE dataset as the data for pre-training.

In main.py, we present the pipeline and loss settings for the pre-training of PSD-FFANet, you can take it as an example and modify it to fit your own model.

Based on our observations, the pre-train models usually have similar performance (sometimes suffer slight drops) on PSNR and SSIM compared with the original models.

Fine-tuning:

Start from a pre-trained model, you can fine-tune it with real-world data in an unsupervised manner. We use RTTS from RESIDE dataset as our fine-tuning data. We also process all hazy images in RTTS by CLAHE for convenience.

You can find both RTTS and our pre-processed data in this Link (code: wxty). Code for the fine-tuning of the three provided models is included in finetune.py.

Owner
zychen
:)
zychen
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
Converts geometry node attributes to built-in attributes

Attribute Converter Simplifies converting attributes created by geometry nodes to built-in attributes like UVs or vertex colors, as a single click ope

Ivan Notaros 12 Dec 22, 2022
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Shōgun

The SHOGUN machine learning toolbox Unified and efficient Machine Learning since 1999. Latest release: Cite Shogun: Develop branch build status: Donat

Shōgun ML 2.9k Jan 04, 2023
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
RGB-D Local Implicit Function for Depth Completion of Transparent Objects

RGB-D Local Implicit Function for Depth Completion of Transparent Objects [Project Page] [Paper] Overview This repository maintains the official imple

NVIDIA Research Projects 43 Dec 12, 2022
Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021]

Deep Video Matting via Spatio-Temporal Alignment and Aggregation [CVPR2021] Paper: https://arxiv.org/abs/2104.11208 Introduction Despite the significa

76 Dec 07, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022