audioLIME: Listenable Explanations Using Source Separation

Overview

audioLIME

This repository contains the Python package audioLIME, a tool for creating listenable explanations for machine learning models in music information retrival (MIR). audioLIME is based on the method lime (local interpretable model-agnostic explanations) work presented in this paper and uses source separation estimates in order to create interpretable components.

Citing

If you use audioLIME in your work, please cite it:

@misc{haunschmid2020audiolime,
    title={{audioLIME: Listenable Explanations Using Source Separation}},
    author={Verena Haunschmid and Ethan Manilow and Gerhard Widmer},
    year={2020},
    eprint={2008.00582},
    archivePrefix={arXiv},
    primaryClass={cs.SD},
    howpublished={13th International Workshop on Machine Learning and Music}
}

Publications

audioLIME is introduced/used in the following publications:

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, audioLIME: Listenable Explanations Using Source Separation

  • Verena Haunschmid, Ethan Manilow and Gerhard Widmer, Towards Musically Meaningful Explanations Using Source Separation

Installation

The audioLIME package is not on PyPI yet. For installing it, clone the git repo and install it using setup.py.

git clone https://github.com/CPJKU/audioLIME.git  # HTTPS
git clone [email protected]:CPJKU/audioLIME.git  # SSH
cd audioLIME
python setup.py install

To install a version for development purposes check out this article.

Tests

To test your installation, the following test are available:

python -m unittest tests.test_SpleeterFactorization

python -m unittest tests.test_DataProviders

Note on Requirements

To keep it lightweight, not all possible dependencies are contained in setup.py. Depending on the factorization you want to use, you might need different packages, e.g. nussl or spleeter.

Installation & Usage of spleeter

pip install spleeter==2.0.2

When you're using spleeter for the first time, it will download the used model in a directory pretrained_models. You can only change the location by setting an environment variable MODEL_PATH before spleeter is imported. There are different ways to set an environment variable, for example:

export MODEL_PATH=/share/home/verena/experiments/spleeter/pretrained_models/

Available Factorizations

Currently we have the following factorizations implemented:

  • SpleeterFactorization based on the source separation system spleeter (code)
  • SoundLIMEFactorization: time-frequency segmentation based on SoundLIME (the original implementation was not flexible enough for our experiments)

Usage Example

Here we demonstrate how we can explain the prediction of FCN (code, Choi 2016, Won 2020) using SpleeterFactorization.

For this to work you need to install the requirements found in the above mentioned repo of the tagger and spleeter:

pip install -r examples/requirements.txt
    data_provider = RawAudioProvider(audio_path)
    spleeter_factorization = SpleeterFactorization(data_provider,
                                                   n_temporal_segments=10,
                                                   composition_fn=None,
                                                   model_name='spleeter:5stems')

    explainer = lime_audio.LimeAudioExplainer(verbose=True, absolute_feature_sort=False)

    explanation = explainer.explain_instance(factorization=spleeter_factorization,
                                             predict_fn=predict_fn,
                                             top_labels=1,
                                             num_samples=16384,
                                             batch_size=32
                                             )

For the details on setting everything up, see example_using_spleeter_fcn.

Listen to the input and explanation.

TODOs

  • upload to pypi.org (to allow installation via pip)
  • usage example for SoundLIMEFactorization
  • tutorial in form of a Jupyter Notebook
  • more documentation
You might also like...
Offical implementation for
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

Source-to-Source Debuggable Derivatives in Pure Python
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

This repository contains the source code for the paper
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

Releases(v0.0.3)
Owner
Institute of Computational Perception
Johannes Kepler University
Institute of Computational Perception
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Video Object Segmentation Language as Queries for Referring Video Object S

Jonas Wu 232 Dec 29, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV

Object tracking using YOLO and a tracker(KCF, MOSSE, CSRT) in openCV File YOLOv3 weight can be downloaded

Ngoc Quyen Ngo 2 Mar 27, 2022
PyTorch implementation of Deformable Convolution

PyTorch implementation of Deformable Convolution !!!Warning: There is some issues in this implementation and this repo is not maintained any more, ple

Wei Ouyang 893 Dec 18, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022