Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
An open-source Discord bot that alerts your server when it's Funky Monkey Friday!

Funky-Monkey-Friday-Bot An open-source Discord bot that alerts your server when it's Funky Monkey Friday! Add it to your server here! https://discord.

Cole Swinford 0 Nov 10, 2022
A python script fetches all your starred repositories from your GitHub account and clones them to your server so you will never lose important resources

A python script fetches all your starred repositories from your GitHub account and clones them to your server so you will never lose important resources

Ringo Hoffmann 27 Oct 01, 2022
This is a simple code for discord bot !

Discord bot dice roller this is a simple code for discord bot it can roll 1d4, 1d6, 1d8, 1d10, 1d12, 1d20, 1d100 for you in your discord server. Actua

Mostafa Koolabadi 0 Jan 02, 2022
Discord raiding tool. Made in python 3.9

XSpammer Discord raiding tool with 20 features. YT Showcase Requirements/Installation Python 3.7+ [https://python.org] Run setup.bat to install the es

Tiie 6 Oct 24, 2022
Many discord bots serving different purposes

Discord_Botlari Farklı amaçlara hizmet eden bir çok discord botu En kapsamlı Bot Game Bottur. bir oyun botudur discord sunucularında kullanılır. (tüm

1 Dec 21, 2021
Google translator bot using pyTelegramBotAPI

iTranslator-bot Super google translator bot using pyTelegramBotAPI A bot is a professional bot that automatically detects a language in texts or capti

Abdulatif 6 Nov 22, 2022
Mixcloud API wrapper for Python and Async IO

aiomixcloud Mixcloud API wrapper for Python and Async IO aiomixcloud is a wrapper library for the HTTP API of Mixcloud. It supports asynchronous opera

Aristotelis Mikropoulos 26 Dec 31, 2022
Stack overflow search API

Stack overflow search API

Vikash Karodiya 1 Nov 15, 2021
2b2t Priority queue discord bot announcer

2b2t Priority queue discord bot announcer Commands !prioq - Checks the priority queue length and sends it. !start - Starts a loop that sends the sta

Gumi 5 Jun 06, 2022
Um painel de consultas completo, com metodos atualizados.

Meu pix para eu comprar um café :D "25ef499b-d184-4aa1-9797-0a294be40d83" Painel-de-Consultas Completo. Feito por JOESTAR-TEAM Painel de consultas Com

Dio brando 10 Nov 19, 2021
A quick and dirty script to scan the network, find default credentials on services and post a message to a Slack channel with the results.

A quick and dirty script to scan the network, find default credentials on services and post a message to a Slack channel with the results.

Security Weekly 11 Jun 03, 2022
A simple use library for bot discord.py developers

Discord Bot Template It's a simple use library for bot discord.py developers. Ob

Tir Omar 0 Oct 16, 2022
An App to get Ko-Fi payment updates on Telegram.

Deployments. Heroku.com 🚀 Replit.com 🌀 Make sure your app runs 24*7 Zeet.co 💪 Use this :~ Get Bot token from @botfather 🤖 Get ID where you want to

Jainam Oswal 16 Nov 12, 2022
A Recommendation System For Diabetes Detection And Treatment

Diabetes-detection-tg-bot A Recommendation System For Diabetes Detection And Treatment Данная система помогает определить наличие или отсутствие сахар

Alexander Kanonirov 1 Nov 22, 2021
通过GitHub的actions 自动采集节点 生成订阅信息

VmessActions 通过GitHub的actions 自动采集节点 自动生成订阅信息 订阅内容自动更新再仓库的 clash.yml 和 v2ray.txt 中 然后PC端/手机端根据自己的软件支持的格式,订阅对应的链接即可

skywolf627 372 Jan 04, 2023
A simple telegram bot to download from Zee5 links

Zee5 Downloader If you find any bugs, report at @TroJanzSupport My Features: 👉 Upload as file/video from any NON-DRM Zee5 link 👉 Permanent thumbnail

TroJanzHEX 95 Dec 20, 2022
An example of using discordpy 2.0.0a to create a bot that supports slash commands

DpySlashBotExample An example of using discordpy 2.0.0a to create a bot that supports slash commands. This is not a fully complete bot, just an exampl

7 Oct 17, 2022
Okaeri Robot: a modular bot running on python3 with anime theme and have a lot features

OKAERI ROBOT Okaeri Robot is a modular bot running on python3 with anime theme a

Dream Garden (rey) 2 Jan 19, 2022
SEBUAH TOOLS CRACK FACEBOOK & INSTAGRAM DENGAN FITUR YANGMENDUKUNG

SEBUAH TOOLS CRACK FACEBOOK & INSTAGRAM DENGAN FITUR YANGMENDUKUNG

Jeeck X Nano 1 Dec 27, 2021