As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

Overview

HAKE-Action

HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It includes reproduced SOTA models and their HAKE-enhanced versions. HAKE-Action is authored by Yong-Lu Li, Xinpeng Liu, Liang Xu, Cewu Lu. Currently, it is manintained by Yong-Lu Li, Xinpeng Liu and Liang Xu.

News: (2021.10.06) Our extended version of SymNet is accepted by TPAMI! Paper and code are coming soon.

(2021.2.7) Upgraded HAKE-Activity2Vec is released! Images/Videos --> human box + ID + skeleton + part states + action + representation. [Description]

Full demo: [YouTube], [bilibili]

(2021.1.15) Our extended version of TIN (Transferable Interactiveness Network) is accepted by TPAMI! New paper and code will be released soon.

(2020.10.27) The code of IDN (Paper) in NeurIPS'20 is released!

(2020.6.16) Our larger version HAKE-Large (>120K images, activity and part state labels) is released!

We released the HAKE-HICO (image-level part state labels upon HICO) and HAKE-HICO-DET (instance-level part state labels upon HICO-DET). The corresponding data can be found here: HAKE Data.

  • Paper is here.
  • More data and part states (e.g., upon AVA, more kinds of action categories, more rare actions...) are coming.
  • We will keep updating HAKE-Action to include more SOTA models and their HAKE-enhanced versions.

Data Mode

  • HAKE-HICO (PaStaNet* mode in paper): image-level, add the aggression of all part states in an image (belong to one or multiple active persons), compared with original HICO, the only additional labels are image-level human body part states.

  • HAKE-HICO-DET (PaStaNet* in paper): instance-level, add part states for each annotated persons of all images in HICO-DET, the only additional labels are instance-level human body part states.

  • HAKE-Large (PaStaNet in paper): contains more than 120K images, action labels and the corresponding part state labels. The images come from the existing action datasets and crowdsourcing. We mannully annotated all the active persons with our novel part-level semantics.

  • GT-HAKE (GT-PaStaNet* in paper): GT-HAKE-HICO and G-HAKE-HICO-DET. It means that we use the part state labels as the part state prediction. That is, we can perfectly estimate the body part states of a person. Then we use them to infer the instance activities. This mode can be seen as the upper bound of our HAKE-Action. From the results below we can find that, the upper bound is far beyond the SOTA performance. Thus, except for the current study on the conventional instance-level method, continue promoting part-level method based on HAKE would be a very promising direction.

Notion

Activity2Vec and PaSta-R are our part state based modules, which operate action inference based on part semantics, different from previous instance semantics. For example, Pairwise + HAKE-HICO pre-trained Activity2Vec + Linear PaSta-R (the seventh row) achieves 45.9 mAP on HICO. More details can be found in our CVPR2020 paper: PaStaNet: Toward Human Activity Knowledge Engine.

Code

The two versions of HAKE-Action are relesased in two branches of this repo:

Models on HICO

Instance-level +Activity2Vec +PaSta-R mAP [email protected] [email protected] [email protected]
R*CNN - - 28.5 - - -
Girdhar et.al. - - 34.6 - - -
Mallya et.al. - - 36.1 - - -
Pairwise - - 39.9 13.0 19.8 22.3
- HAKE-HICO Linear 44.5 26.9 30.0 30.7
Mallya et.al. HAKE-HICO Linear 45.0 26.5 29.1 30.3
Pairwise HAKE-HICO Linear 45.9 26.2 30.6 31.8
Pairwise HAKE-HICO MLP 45.6 26.0 30.8 31.9
Pairwise HAKE-HICO GCN 45.6 25.2 30.0 31.4
Pairwise HAKE-HICO Seq 45.9 25.3 30.2 31.6
Pairwise HAKE-HICO Tree 45.8 24.9 30.3 31.8
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise HAKE-Large Linear 46.3 24.7 31.8 33.1
Pairwise GT-HAKE-HICO Linear 65.6 47.5 55.4 56.6

Models on HICO-DET

Using Object Detections from iCAN

Instance-level +Activity2Vec +PaSta-R Full(def) Rare(def) None-Rare(def) Full(ko) Rare(ko) None-Rare(ko)
iCAN - - 14.84 10.45 16.15 16.26 11.33 17.73
TIN - - 17.03 13.42 18.11 19.17 15.51 20.26
iCAN HAKE-HICO-DET Linear 19.61 17.29 20.30 22.10 20.46 22.59
TIN HAKE-HICO-DET Linear 22.12 20.19 22.69 24.06 22.19 24.62
TIN HAKE-Large Linear 22.65 21.17 23.09 24.53 23.00 24.99
TIN GT-HAKE-HICO-DET Linear 34.86 42.83 32.48 35.59 42.94 33.40

Models on AVA (Frame-based)

Method +Activity2Vec +PaSta-R mAP
AVA-TF-Baseline - - 11.4
LFB-Res-50-baseline - - 22.2
LFB-Res-101-baseline - - 23.3
AVA-TF-Baeline HAKE-Large Linear 15.6
LFB-Res-50-baseline HAKE-Large Linear 23.4
LFB-Res-101-baseline HAKE-Large Linear 24.3

Models on V-COCO

Method +Activity2Vec +PaSta-R AP(role), Scenario 1 AP(role), Scenario 2
iCAN - - 45.3 52.4
TIN - - 47.8 54.2
iCAN HAKE-Large Linear 49.2 55.6
TIN HAKE-Large Linear 51.0 57.5

Training Details

We first pre-train the Activity2Vec and PaSta-R with activities and PaSta labels. Then we change the last FC in PaSta-R to fit the activity categories of the target dataset. Finally, we freeze Activity2Vec and fine-tune PaSta-R on the train set of the target dataset. Here, HAKE works like the ImageNet and Activity2Vec is used as a pre-trained knowledge engine to promote other tasks.

Citation

If you find our work useful, please consider citing:

@inproceedings{li2020pastanet,
  title={PaStaNet: Toward Human Activity Knowledge Engine},
  author={Li, Yong-Lu and Xu, Liang and Liu, Xinpeng and Huang, Xijie and Xu, Yue and Wang, Shiyi and Fang, Hao-Shu and Ma, Ze and Chen, Mingyang and Lu, Cewu},
  booktitle={CVPR},
  year={2020}
}
@inproceedings{li2019transferable,
  title={Transferable Interactiveness Knowledge for Human-Object Interaction Detection},
  author={Li, Yong-Lu and Zhou, Siyuan and Huang, Xijie and Xu, Liang and Ma, Ze and Fang, Hao-Shu and Wang, Yanfeng and Lu, Cewu},
  booktitle={CVPR},
  year={2019}
}
@inproceedings{lu2018beyond,
  title={Beyond holistic object recognition: Enriching image understanding with part states},
  author={Lu, Cewu and Su, Hao and Li, Yonglu and Lu, Yongyi and Yi, Li and Tang, Chi-Keung and Guibas, Leonidas J},
  booktitle={CVPR},
  year={2018}
}

HAKE

HAKE[website] is a new large-scale knowledge base and engine for human activity understanding. HAKE provides elaborate and abundant body part state labels for active human instances in a large scale of images and videos. With HAKE, we boost the action understanding performance on widely-used human activity benchmarks. Now we are still enlarging and enriching it, and looking forward to working with outstanding researchers around the world on its applications and further improvements. If you have any pieces of advice or interests, please feel free to contact Yong-Lu Li ([email protected]).

If you get any problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!

HAKE-Action is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail. We will send the detail agreement to you.

Owner
Yong-Lu Li
Ph.D. CV_Robotics
Yong-Lu Li
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022