ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Related tags

Deep LearningShinRL
Overview

Status: Under development (expect bug fixes and huge updates)

ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

ShinRL is an open-source JAX library specialized for the evaluation of reinforcement learning (RL) algorithms from both theoretical and practical perspectives. Please take a look at the paper for details.

QuickStart

QuickStart Try ShinRL at: experiments/QuickStart.ipynb.

import gym
from shinrl import DiscreteViSolver
import matplotlib.pyplot as plt

# make an env & a config
env = gym.make("ShinPendulum-v0")
config = DiscreteViSolver.DefaultConfig(explore="eps_greedy", approx="nn", steps_per_epoch=10000)

# make mixins
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]

# (optional) arrange mixins
# mixins.insert(2, UserDefinedMixIn)

# make & run a solver
dqn_solver = DiscreteViSolver.factory(env, config, mixins)
dqn_solver.run()

# plot performance
returns = dqn_solver.scalars["Return"]
plt.plot(returns["x"], returns["y"])

# plot learned q-values  (act == 0)
q0 = dqn_solver.tb_dict["Q"][:, 0]
env.plot_S(q0, title="Learned")

# plot oracle q-values  (act == 0)
q0 = env.calc_q(dqn_solver.tb_dict["ExploitPolicy"])[:, 0]
env.plot_S(q0, title="Oracle")

# plot optimal q-values  (act == 0)
q0 = env.calc_optimal_q()[:, 0]
env.plot_S(q0, title="Optimal")

Pendulum Example

Key Modules

overview

ShinRL consists of two main modules:

  • ShinEnv: Implement relatively small MDP environments with access to the oracle quantities.
  • Solver: Solve the environments (e.g., finding the optimal policy) with specified algorithms.

🔬 ShinEnv for Oracle Analysis

  • ShinEnv provides small environments with oracle methods that can compute exact quantities:

    • calc_q computes a Q-value table containing all possible state-action pairs given a policy.
    • calc_optimal_q computes the optimal Q-value table.
    • calc_visit calculates state visitation frequency table, for a given policy.
    • calc_return is a shortcut for computing exact undiscounted returns for a given policy.
  • Some environments support continuous action space and image observation. See the following table and shinrl/envs/__init__.py for the available environments.

Environment Dicrete action Continuous action Image Observation Tuple Observation
ShinMaze ✔️ ✔️
ShinMountainCar-v0 ✔️ ✔️ ✔️ ✔️
ShinPendulum-v0 ✔️ ✔️ ✔️ ✔️
ShinCartPole-v0 ✔️ ✔️ ✔️

🏭 Flexible Solver by MixIn

MixIn

  • A "mixin" is a class which defines and implements a single feature. ShinRL's solvers are instantiated by mixing some mixins.
  • By arranging mixins, you can easily implement your own idea on the ShinRL's code base. See experiments/QuickStart.ipynb for example.
  • The following code demonstrates how different mixins turn into "value iteration" and "deep Q learning":
import gym
from shinrl import DiscreteViSolver

env = gym.make("ShinPendulum-v0")

# run value iteration (dynamic programming)
config = DiscreteViSolver.DefaultConfig(approx="tabular", explore="oracle")
mixins = DiscreteViSolver.make_mixins(env, config)
# mixins == [TabularDpStepMixIn, QTargetMixIn, TbInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
vi_solver = DiscreteViSolver.factory(env, config, mixins)
vi_solver.run()

# run deep Q learning 
config = DiscreteViSolver.DefaultConfig(approx="nn", explore="eps_greedy")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TbInitMixIn, NetActMixIn, NetInitMixIn, ShinExploreMixIn, ShinEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

# ShinRL also provides deep RL solvers with OpenAI Gym environment supports.
env = gym.make("CartPole-v0")
mixins = DiscreteViSolver.make_mixins(env, config)  
# mixins == [DeepRlStepMixIn, QTargetMixIn, TargetMixIn, NetActMixIn, NetInitMixIn, GymExploreMixIn, GymEvalMixIn, DiscreteViSolver]
dql_solver = DiscreteViSolver.factory(env, config, mixins)
dql_solver.run()

Installation

git clone [email protected]:omron-sinicx/ShinRL.git
cd ShinRL
pip install -e .

Test

cd ShinRL
make test

Format

cd ShinRL
make format

Docker

cd ShinRL
docker-compose up

Citation

# Neurips DRL WS 2021 version
@inproceedings{toshinori2021shinrl,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    booktitle = {Proceedings of the NeurIPS Deep RL Workshop},
}

# Arxiv version
@article{toshinori2021shinrlArxiv,
    author = {Kitamura, Toshinori and Yonetani, Ryo},
    title = {ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives},
    year = {2021},
    url = {https://arxiv.org/abs/2112.04123},
    journal={arXiv preprint arXiv:2112.04123},
}
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
📚 A collection of Jupyter notebooks for learning and experimenting with OpenVINO 👓

A collection of ready-to-run Python* notebooks for learning and experimenting with OpenVINO developer tools. The notebooks are meant to provide an introduction to OpenVINO basics and teach developers

OpenVINO Toolkit 840 Jan 03, 2023
Use graph-based analysis to re-classify stocks and to improve Markowitz portfolio optimization

Dynamic Stock Industrial Classification Use graph-based analysis to re-classify stocks and experiment different re-classification methodologies to imp

Sheng Yang 10 Dec 05, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
Earthquake detection via fiber optic cables using deep learning

Earthquake detection via fiber optic cables using deep learning Author: Fantine Huot Getting started Update the submodules After cloning the repositor

Fantine 4 Nov 30, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022