The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Overview

Prior-Enhanced network with Meta-Prototypes (PEMP)

This is the PyTorch implementation of PEMP.

  • Overview of PEMP

Framework

  • Meta-Prototypes & Adaptive Prototypes

meta-prototypes

1. Preliminaries

  • Ubuntu 18.04 (tested)
  • Geforce GTX 2080Ti or Tesla V100 (tested)

1.1 Setup Python Enveriment

# Install Python and packages
conda create -n torch python=3.7
source activate torch
conda install numpy=1.19.1
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 -c pytorch 
conda install tqdm scipy pymongo opencv
pip install sacred==0.8.2 dropblock==0.3.0 pycocotools

1.2 Manage Experiments

We utilize Sacred for managing experiments (both training and testing).

If the users only want to perform the inference on PEMP, feel free to skip this subsection and continue on preparing datasets.

If the users want to re-train PEMP, please refer to this for setting up the database and visualization tools.

1.3 Prepare Data & Pre-trained Models

Please refer to this for preparing the data and pre-trained models.

1.4 Project Structure

  • ./core/ contains the trainer, evaluator, losses, metrics and solver.
  • ./data/ contains the datasets and pre-trained weights of VGG and ResNet.
  • ./data_kits/ contains the data loaders.
  • ./entry/ contains the entry points of the supported models.
  • ./networks/ contains the network implementation of the supported models.
  • ./scripts/ contains the running scripts of the supported models.
  • ./http/ contains the backend and the frontend of the visualization tools.
  • ./utils/ contains a timer, a logger, and some helper functions.
  • ./config.py contains global configuration and device configuration.

1.5 Supports (References)

Supports Source Link
Datasets PASCAL-5i http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
COCO-20i https://cocodataset.org/
Models Baseline (ours)
PEMP (ours)
PANet https://github.com/kaixin96/PANet
CaNet (only 1-shot) https://github.com/icoz69/CaNet
RPMMs (only 1-shot) https://github.com/Yang-Bob/PMMs
PFENet https://github.com/Jia-Research-Lab/PFENet

2. Training and Testing

2.1 Reproducibility

For reproducing the results, please make sure:

  1. Install the exact versions of packages(python, numpy, pytorch, torchvision and cudatoolkit).

  2. Use the random seed 1234 for the packages(random, numpy and pytorch), which is the default setting in the released code.

  3. Finish the unittest of the data loaders and get OK to assert the random seed works:

    PYTHONPATH=./ python -m unittest data_kits.pascal_voc_test
    PYTHONPATH=./ python -m unittest data_kits.coco_test

2.2 Usage

  • Start the MongoDB and Omniboard first.

  • Basic usage

CUDA_VISIBLE_DEVICES="0" PYTHONPATH=./ python entry/<MODEL>.py <COMMAND> with <UPDATE>
  • Parameter explanation
# <MODEL>:
#     We support several models: baseline, pemp_stage1, pemp_stage2, panet, canet, pfenet
#
# <COMMAND>:
#     We define three commands: train, test, visualize
#     Sacred provide several commands: print_config, print_dependencies
#
# <UPDATE>:
#    The user can update parameters. Please run following command for help.
#        PYTHONPATH=./ python entry/pemp_stage1.py help train
#	     PYTHONPATH=./ python entry/pemp_stage1.py help test
#        PYTHONPATH=./ python entry/pemp_stage1.py help visualize

# Get help for all the parameters
PYTHONPATH=./ python entry/pemp_stage1.py print_config
  • For simplicity, we provide some scripts for running experiments
# Template:
# bash ./scripts/pemp_stage1.sh train 0 [split=0] [shot=1] [data.dataset=PASCAL] [-u] [-p]
# bash ./scripts/pemp_stage1.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [exp_id=1] [-u] [-p]
# bash ./scripts/pemp_stage2.sh test 0 [split=0] [shot=1] [data.dataset=PASCAL] [s1.id=1] [exp_id=5] [-u] [-p]

# Step1: Training/Testing PEMP_Stage1
bash ./scripts/pemp_stage1.sh train 0 split=0
bash ./scripts/pemp_stage1.sh test 0 split=0 exp_id=<S1_ID>

# Step2: Training/Testing PEMP_Stage2
bash ./scripts/pemp_stage2.sh train 0 split=0 s1.id=<S1_ID>
bash ./scripts/pemp_stage1.sh test 0 split=0 s1.id=<S1_ID> exp_id=<S2_ID>

3. Results (ResNet-50)

  • PASCAL-5i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
Baseline 1 45.48 59.97 51.35 43.31 50.03 67.58
RPMMS 53.86 66.45 52.76 51.31 56.10 70.32
PEMP 55.74 65.88 54.12 50.34 56.52 71.41
Baseline 5 52.47 66.31 59.85 51.02 57.41 71.90
RPMMS 56.28 67.34 54.52 51.00 57.30 -
PEMP 58.59 69.10 60.31 53.01 60.25 73.84
  • COCO-20i
Methods shots split-0 split-1 split-2 split-3 mIoU bIoU
RPMMS 1 29.53 36.82 28.94 27.02 30.58 -
PEMP 29.28 34.09 29.64 30.36 30.84 63.13
RPMMS 5 33.82 41.96 32.99 33.33 35.52 -
PEMP 39.08 44.59 39.54 41.42 41.16 70.71

4. Visualization

We provide a simple tool for visualizing the segmentation prediction and response maps (see the paper).

Visualization tool

4.1 Evaluate and Save Predictions

# With pre-trained model
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005

# A test run contains 1000 episodes. For fewer episodes, set the `data.test_n`
bash ./scripts/pemp_stage2.sh visualize 0 s1.id=1001 exp_id=1005 data.test_n=100

The prediction and response maps are saved in the directory ./http/static.

4.2 Start the Backend

# Instal flask 
conda install flask

# Start backend
cd http
python backend.py

# For 5-shot
python backend_5shot.py

4.3 Start the Frontend

Open the address https://localhost:17002 for browsing the results. ( https://localhost:17003 for 5-shot results)

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
DeepCAD: A Deep Generative Network for Computer-Aided Design Models

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
git git《Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking》(CVPR 2021) GitHub:git2] 《Masksembles for Uncertainty Estimation》(CVPR 2021) GitHub:git3]

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li Accepted by CVPR

NingWang 236 Dec 22, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
PyTorch image models, scripts, pretrained weights -- ResNet, ResNeXT, EfficientNet, EfficientNetV2, NFNet, Vision Transformer, MixNet, MobileNet-V3/V2, RegNet, DPN, CSPNet, and more

PyTorch Image Models Sponsors What's New Introduction Models Features Results Getting Started (Documentation) Train, Validation, Inference Scripts Awe

Ross Wightman 22.9k Jan 09, 2023
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022