Classical OCR DCNN reproduction based on PaddlePaddle framework.

Overview

Paddle-SVHN

Classical OCR DCNN reproduction based on PaddlePaddle framework.

This project reproduces Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks based on the paddlepaddle framework and participates in the Baidu paper reproduction competition. The AIStudio link is provided as follow:

link

Results_Compared

SVHN Dataset

Methods Model Download Batch Size Learning Rate Patience Decay Step Decay Rate Training Speed (FPS) Accuracy
Pytorch_SVHN torch_model 512 0.16 100 625 0.9 ~1700 95.65%
PaddlePaddle_SVHN paddle_model 1024 0.01 100 625 0.9 ~1700 95.65%

Introduction

The main idea of this exercise is to study the evolvement of the state of the art and main work along topic of visual attention model. There are two datasets that are studied: augmented MNIST and SVHN. The former dataset focused on canonical problem  —  handwritten digits recognition, but with cluttering and translation, the latter focus on real world problem  —  street view house number (SVHN) transcription. In this exercise, the following papers are studied in the way of developing a good intuition to choose a proper model to tackle each of the above challenges.

For more detail, please refer to this blog

Recommended environment

Python 3.6+
paddlepaddle-gpu 2.0.2
nccl 2.0+
editdistance
visdom
h5py
protobuf
lmdb

Install

Install env

Install paddle following the official tutorial.

pip install visdom
pip install h5py
pip install protobuf
pip install lmdb

Dataset

  1. Download SVHN Dataset format 1

  2. Extract to data folder, now your folder structure should be like below:

    SVHNClassifier
        - data
            - extra
                - 1.png 
                - 2.png
                - ...
                - digitStruct.mat
            - test
                - 1.png 
                - 2.png
                - ...
                - digitStruct.mat
            - train
                - 1.png 
                - 2.png
                - ...
                - digitStruct.mat
    

Usage

  1. (Optional) Take a glance at original images with bounding boxes

    Open `draw_bbox.ipynb` in Jupyter
    
  2. Convert to LMDB format

    $ python convert_to_lmdb.py --data_dir ./data
    
  3. (Optional) Test for reading LMDBs

    Open `read_lmdb_sample.ipynb` in Jupyter
    
  4. Train

    $ python train.py --data_dir ./data --logdir ./logs
    
  5. Retrain if you need

    $ python train.py --data_dir ./data --logdir ./logs_retrain --restore_checkpoint ./logs/model-100.pth
    
  6. Evaluate

    $ python eval.py --data_dir ./data ./logs/model-100.pth
    
  7. Visualize

    $ python -m visdom.server
    $ python visualize.py --logdir ./logs
    
  8. Infer

    $ python infer.py --checkpoint=./logs/model-100.pth ./images/test1.png
    
  9. Clean

    $ rm -rf ./logs
    or
    $ rm -rf ./logs_retrain
    
Owner
Dreams Are Messages From The Deep🪐
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees

Mega-NeRF This repository contains the code needed to train Mega-NeRF models and generate the sparse voxel octrees used by the Mega-NeRF-Dynamic viewe

cmusatyalab 260 Dec 28, 2022
A video scene detection algorithm is designed to detect a variety of different scenes within a video

Scene-Change-Detection - A video scene detection algorithm is designed to detect a variety of different scenes within a video. There is a very simple definition for a scene: It is a series of logical

1 Jan 04, 2022
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
A simple interface for editing natural photos with generative neural networks.

Neural Photo Editor A simple interface for editing natural photos with generative neural networks. This repository contains code for the paper "Neural

Andy Brock 2.1k Dec 29, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022