Self-training for Few-shot Transfer Across Extreme Task Differences

Related tags

Deep LearningSTARTUP
Overview

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP)

Introduction

This repo contains the official implementation of the following ICLR2021 paper:

Title: Self-training for Few-shot Transfer Across Extreme Task Differences
Authors: Cheng Perng Phoo, Bharath Hariharan
Institution: Cornell University
Arxiv: https://arxiv.org/abs/2010.07734
Abstract:
Most few-shot learning techniques are pre-trained on a large, labeled "base dataset". In problem domains where such large labeled datasets are not available for pre-training (e.g., X-ray, satellite images), one must resort to pre-training in a different "source" problem domain (e.g., ImageNet), which can be very different from the desired target task. Traditional few-shot and transfer learning techniques fail in the presence of such extreme differences between the source and target tasks. In this paper, we present a simple and effective solution to tackle this extreme domain gap: self-training a source domain representation on unlabeled data from the target domain. We show that this improves one-shot performance on the target domain by 2.9 points on average on the challenging BSCD-FSL benchmark consisting of datasets from multiple domains.

Requirements

This codebase is tested with:

  1. PyTorch 1.7.1
  2. Torchvision 0.8.2
  3. NumPy
  4. Pandas
  5. wandb (used for logging. More here: https://wandb.ai/)

Running Experiments

Step 0: Dataset Preparation

MiniImageNet and CD-FSL: Download the datasets for CD-FSL benchmark following step 1 and step 2 here: https://github.com/IBM/cdfsl-benchmark
tieredImageNet: Prepare the tieredImageNet dataset following https://github.com/mileyan/simple_shot. Note after running the preparation script, you will need to split the saved images into 3 different folders: train, val, test.

Step 1: Teacher Training on the Base Dataset

We provide scripts to produce teachers for different base datasets. Regardless of the base datasets, please follow the following steps to produce the teachers:

  1. Go into the directory teacher_miniImageNet/ (teacher_ImageNet/ for ImageNet)
  2. Take care of the TODO: in run.sh and configs.py (if applicable).
  3. Run bash run.sh to produce the teachers.

Note that for miniImageNet and tieredImageNet, the training script is adapted based on the official script provided by the CD-FSL benchmark. For ImageNet, we simply download the pre-trained models from PyTorch and convert them to relevant format.

Step 2: Student Training

To train the STARTUP's representation, please follow the following steps:

  1. Go into the directory student_STARTUP/ (student_STARTUP_no_self_supervision/ for the version without SimCLR)
  2. Take care of the TODO: in run.sh and configs.py
  3. Run bash run.sh to produce the student/STARTUP representation.

Step 3: Evaluation

To evaluate different representations, go into evaluation/, modify the TODO: in run.sh and configs.py and run bash run.sh.

Notes

  1. When producing the results for the submitted paper, we did not set torch.backends.cudnn.deterministic and torch.backends.cudnn.benchmark properly, thus causing non-deterministic behaviors. We have rerun our experiments and the updated numbers can be found here: https://docs.google.com/spreadsheets/d/1O1e9xdI1SxVvRWK9VVxcO8yefZhePAHGikypWfhRv8c/edit?usp=sharing. Although some of the numbers has changed, the conclusion in the paper remains unchanged. STARTUP is able to outperform all the baselines, bringing forth tremendous improvements to cross-domain few-shot learning.
  2. All the trainings are done on Nvidia Titan RTX GPU. Evaluation of different representations are performed using Nvidia RTX 2080Ti. Regardless of the GPU models, CUDA11 is used.
  3. This repo is built upon the official CD-FSL benchmark repo: https://github.com/IBM/cdfsl-benchmark/tree/9c6a42f4bb3d2638bb85d3e9df3d46e78107bc53. We thank the creators of the CD-FSL benchmark for releasing code to the public.
  4. If you find this codebase or STARTUP useful, please consider citing our paper:
@inproceeding{phoo2021STARTUP,
    title={Self-training for Few-shot Transfer Across Extreme Task Differences},
    author={Phoo, Cheng Perng and Hariharan, Bharath},
    booktitle={Proceedings of the International Conference on Learning Representations},
    year={2021}
}
Owner
Cheng Perng Phoo
PhD Student at Cornell
Cheng Perng Phoo
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
Implementation of Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021)

PSWE: Pooling by Sliced-Wasserstein Embedding (NeurIPS 2021) PSWE is a permutation-invariant feature aggregation/pooling method based on sliced-Wasser

Navid Naderializadeh 3 May 06, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
Autonomous racing with the Anki Overdrive

Anki Autonomous Racing Autonomous racing with the Anki Overdrive. Using the Overdrive-Python API (https://github.com/xerodotc/overdrive-python) develo

3 Dec 11, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Identifying Stroke Indicators Using Rough Sets

Identifying Stroke Indicators Using Rough Sets With the spirit of reproducible research, this repository contains all the codes required to produce th

Muhammad Salman Pathan 0 Jun 09, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023