[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Overview

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22)

Picture1

Preview version paper of this work is available at: https://arxiv.org/abs/2112.02853

Qualitative results and comparisons with previous SOTAs are available at: https://youtu.be/X6BsS3t3wnc

This repo is a preview version. More details will be added later.

Abstract

Error propagation is a general but crucial problem in online semi-supervised video object segmentation. We aim to suppress error propagation through a correction mechanism with high reliability.

The key insight is to disentangle the correction from the conventional mask propagation process with reliable cues.

We introduce two modulators, propagation and correction modulators, to separately perform channel-wise re-calibration on the target frame embeddings according to local temporal correlations and reliable references respectively. Specifically, we assemble the modulators with a cascaded propagation-correction scheme. This avoids overriding the effects of the reliable correction modulator by the propagation modulator.

Although the reference frame with the ground truth label provides reliable cues, it could be very different from the target frame and introduce uncertain or incomplete correlations. We augment the reference cues by supplementing reliable feature patches to a maintained pool, thus offering more comprehensive and expressive object representations to the modulators. In addition, a reliability filter is designed to retrieve reliable patches and pass them in subsequent frames.

Our model achieves state-of-the-art performance on YouTube-VOS18/19 and DAVIS17-Val/Test benchmarks. Extensive experiments demonstrate that the correction mechanism provides considerable performance gain by fully utilizing reliable guidance.

Requirements

This docker image may contain some redundent packages. A more light-weight one will be generated later.

docker image: xxiaoh/vos:10.1-cudnn7-torch1.4_v3

Citation

If you find this work is useful for your research, please consider citing:

@misc{xu2021reliable,
  title={Reliable Propagation-Correction Modulation for Video Object Segmentation}, 
  author={Xiaohao Xu and Jinglu Wang and Xiao Li and Yan Lu},
  year={2021},
  eprint={2112.02853},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}

Credit

CFBI: https://github.com/z-x-yang/CFBI

Deeplab: https://github.com/VainF/DeepLabV3Plus-Pytorch

GCT: https://github.com/z-x-yang/GCT

Acknowledgement

Firstly, the author would like to thank Rex for his insightful viewpoints about VOS during e-mail discussion! Also, this work is largely built upon the codebase of CFBI. Thanks for the author of CFBI to release such a wonderful code repo for further work to build upon!

Related impressive works in VOS

AOT [NeurIPS 2021]: https://github.com/z-x-yang/AOT

STCN [NeurIPS 2021]: https://github.com/hkchengrex/STCN

MiVOS [CVPR 2021]: https://github.com/hkchengrex/MiVOS

SSTVOS [CVPR 2021]: https://github.com/dukebw/SSTVOS

GraphMemVOS [ECCV 2020]: https://github.com/carrierlxk/GraphMemVOS

CFBI [ECCV 2020]: https://github.com/z-x-yang/CFBI

STM [ICCV 2019]: https://github.com/seoungwugoh/STM

FEELVOS [CVPR 2019]: https://github.com/kim-younghan/FEELVOS

Useful websites for VOS

The 1st Large-scale Video Object Segmentation Challenge: https://competitions.codalab.org/competitions/19544#learn_the_details

The 2nd Large-scale Video Object Segmentation Challenge - Track 1: Video Object Segmentation: https://competitions.codalab.org/competitions/20127#learn_the_details

The Semi-Supervised DAVIS Challenge on Video Object Segmentation @ CVPR 2020: https://competitions.codalab.org/competitions/20516#participate-submit_results

DAVIS: https://davischallenge.org/

YouTube-VOS: https://youtube-vos.org/

Papers with code for Semi-VOS: https://paperswithcode.com/task/semi-supervised-video-object-segmentation

Welcome to comments and discussions!!

Xiaohao Xu: [email protected]

Owner
Xiaohao Xu
Xiaohao Xu
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Rohit Ingole 2 Mar 24, 2022
《Image2Reverb: Cross-Modal Reverb Impulse Response Synthesis》(2021)

Image2Reverb Image2Reverb is an end-to-end neural network that generates plausible audio impulse responses from single images of acoustic environments

Nikhil Singh 48 Nov 27, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
This project uses Template Matching technique for object detecting by detection of template image over base image.

Object Detection Project Using OpenCV This project uses Template Matching technique for object detecting by detection the template image over base ima

Pratham Bhatnagar 7 May 29, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
Le dataset des images du projet d'IA de 2021

face-mask-dataset-ilc-2021 Le dataset des images du projet d'IA de 2021, Indiquez vos id git dans la issue pour les droits TL;DR: Choisir 200 images J

7 Nov 15, 2021
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
A concise but complete implementation of CLIP with various experimental improvements from recent papers

x-clip (wip) A concise but complete implementation of CLIP with various experimental improvements from recent papers Install $ pip install x-clip Usag

Phil Wang 515 Dec 26, 2022