KinectFusion implemented in Python with PyTorch

Overview

KinectFusion implemented in Python with PyTorch

This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, frame-to-model tracking, point-to-plane ICP, raycasting, TSDF fusion, etc.) are implemented using pure PyTorch, i.e. no custom CUDA kernels.

Although without any custom CUDA functions, the system could still run at a fairly fast speed: The demo reconstructs the TUM fr1_desk sequence into a 225 x 171 x 111 TSDF volume with 2cm resolution at round 17 FPS with a single RTX-2080 GPU (~1.5 FPS in CPU mode)

Note that this project is mainly for study purpose, and is not fully optimized for accurate camera tracking.

Requirements

The core functionalities were implemented in PyTorch (1.10). Open3D (0.14.0) is used for visualisation. Other important dependancies include:

  • numpy==1.21.2
  • opencv-python==4.5.5
  • imageio==2.14.1
  • scikit-image==0.19.1
  • trimesh==3.9.43

You can create an anaconda environment called kinfu with the required dependencies by running:

conda env create -f environment.yml
conda activate kinfu

Data Preparation

The code was tested on TUM dataset. After downloading the raw sequences, you will need to run the pre-processing script under dataset/. For example:

python dataset/preprocess.py --config configs/fr1_desk.yaml

There are some example config files under configs/ which correspond to different sequences. You need to replace data_root to your own sequence directory before running the script. After running the script a new directory processed/ will appear under your sequence directory.

Run

After obtaining the processed sequence, you can simply run kinfu.py. For example:

python kinfu.py --config configs/fr1_desk.yaml --save_dir reconstruct/fr1_desk

which will perform the tracking and mapping headlessly and save the results. Or you could run:

python kinfu_gui.py --config configs/fr1_desk.yaml

If you want to visualize the tracking and reconstruction process on-the-fly.

Acknowledgement

Part of the tracking code was borrowed and modified from DeepIC. Also thank Binbin Xu for implementing part of the TSDF volume code which is inspired by Andy Zeng's tsdf-fusion-python.

Owner
Jingwen Wang
I'm a PhD student at University College London (UCL) working on Object SLAM and 3D Vision.
Jingwen Wang
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
ArtEmis: Affective Language for Art

ArtEmis: Affective Language for Art Created by Panos Achlioptas, Maks Ovsjanikov, Kilichbek Haydarov, Mohamed Elhoseiny, Leonidas J. Guibas Introducti

Panos 268 Dec 12, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
This code finds bounding box of a single human mouth.

This code finds bounding box of a single human mouth. In comparison to other face segmentation methods, it is relatively insusceptible to open mouth conditions, e.g., yawning, surgical robots, etc. T

iThermAI 4 Nov 27, 2022
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
PyTorch implementation of Higher Order Recurrent Space-Time Transformer

Higher Order Recurrent Space-Time Transformer (HORST) This is the official PyTorch implementation of Higher Order Recurrent Space-Time Transformer. Th

13 Oct 18, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Fast, general, and tested differentiable structured prediction in PyTorch

HNLP 1.1k Dec 16, 2022
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022