Exploring Visual Engagement Signals for Representation Learning

Related tags

Deep Learningvise
Overview

Exploring Visual Engagement Signals for Representation Learning

Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim
Cornell University, Facebook AI


arXiv: https://arxiv.org/abs/2104.07767

common supervisory signals
VisE as supervisory signals.

VisE is a pretraining approach which leverages Visual Engagement clues as supervisory signals. Given the same image, visual engagement provide semantically and contextually richer information than conventional recognition and captioning tasks. VisE transfers well to subjective downstream computer vision tasks like emotion recognition or political bias classification.

💬 Loading pretrained models

NOTE: This is a torchvision-like model (all the layers before the last global average-pooling layer.). Given a batch of image tensors with size (B, 3, 224, 224), the provided models produce spatial image features of shape (B, 2048, 7, 7), where B is the batch size.

Loading models with torch.hub

Get the pretrained ResNet-50 models from VisE in one line!

VisE-250M (ResNet-50): this model is pretrained with 250 million public image posts.

import torch
model = torch.hub.load("KMnP/vise", "resnet50_250m", pretrained=True)

VisE-1.2M (ResNet-50): This model is pretrained with 1.23 million public image posts.

import torch
model = torch.hub.load("KMnP/vise", "resnet50_1m", pretrained=True)

Loading models manually

Arch Size Model
VisE-250M ResNet-50 94.3 MB download
VisE-1.2M ResNet-50 94.3 MB download

If you encounter any issues with torch.hub, alternatively you can download the model checkpoints manually, and then following the script below.

import torch
import torchvision

# Create a torchvision resnet50 with randomly initialized weights.
model = torchvision.models.resnet50(pretrained=False)

# Get the model before the global aver-pooling layer.
model = torch.nn.Sequential(*list(model.children())[:-2])

# load the pretrained model from a local path: <CHECKPOINT_PATH>:
model.load_state_dict(torch.load(CHECKPOINT_PATH))

💬 Citing VisE

If you find VisE useful in your research, please cite the following publication.

@misc{jia2021vise,
      title={Exploring Visual Engagement Signals for Representation Learning}, 
      author={Menglin Jia and Zuxuan Wu and Austin Reiter and Claire Cardie and Serge Belongie and Ser-Nam Lim},
      year={2021},
      eprint={2104.07767},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

💬 Acknowledgments

We thank Marseille who was featured in the teaser photo.

💬 License

VisE models are released under the CC-BY-NC 4.0 license. See LICENSE for additional details.

Owner
Menglin Jia
K-Mn-P: "jia meng lin" (mandarin pronunciation of those chemical elements)
Menglin Jia
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
Training neural models with structured signals.

Neural Structured Learning in TensorFlow Neural Structured Learning (NSL) is a new learning paradigm to train neural networks by leveraging structured

955 Jan 02, 2023
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
PyTorch Implementation of ECCV 2020 Spotlight TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images

TuiGAN-PyTorch Official PyTorch Implementation of "TuiGAN: Learning Versatile Image-to-Image Translation with Two Unpaired Images" (ECCV 2020 Spotligh

181 Dec 09, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Links to works on deep learning algorithms for physics problems, TUM-I15 and beyond

Nils Thuerey 1.3k Jan 08, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
Adversarial Learning for Modeling Human Motion

Adversarial Learning for Modeling Human Motion This repository contains the open source code which reproduces the results for the paper: Adversarial l

wangqi 6 Jun 15, 2021
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
中文语音识别系列,读者可以借助它快速训练属于自己的中文语音识别模型,或直接使用预训练模型测试效果。

MASR中文语音识别(pytorch版) 开箱即用 自行训练 使用与训练分离(增量训练) 识别率高 说明:因为每个人电脑机器不同,而且有些安装包安装起来比较麻烦,强烈建议直接用我编译好的docker环境跑 目前docker基础环境为ubuntu-cuda10.1-cudnn7-pytorch1.6.

发送小信号 180 Dec 17, 2022
Joint Gaussian Graphical Model Estimation: A Survey

Joint Gaussian Graphical Model Estimation: A Survey Test Models Fused graphical lasso [1] Group graphical lasso [1] Graphical lasso [1] Doubly joint s

Koyejo Lab 1 Aug 10, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023