This is the offical website for paper ''Category-consistent deep network learning for accurate vehicle logo recognition''

Overview

The Pytorch Implementation of Category-consistent deep network learning for accurate vehicle logo recognition

Framework Architecture

Image

Requirements

  • Pytorch==1.0.1 or higher
  • opencv version: 4.1.0

Datasets

  • XMU:
    • Y. Huang, R. Wu, Y. Sun, W. Wang, and X. Ding, Vehicle logo recog775 nition system based on convolutional neural networks with a pretraining strategy, IEEE Transactions on Intelligent Transportation Systems 16 (4) (2015) 1951-1960.
    • https://xmu-smartdsp.github.io/VehicleLogoRecognition.html
  • HFUT-VL1 and HFUT-VL2:
    • Y. Yu, J. Wang, J. Lu, Y. Xie, and Z. Nie, Vehicle logo recognition based on overlapping enhanced patterns of oriented edge magnitudes, Computers & Electrical Engineering 71 (2018) 273–283.
    • https://github.com/HFUT-VL/HFUT-VL-dataset
  • CompCars:
    • L. Yang, P. Luo, C. C. Loy, and X. Tang, A large-scale car dataset for fine-grained categorization and verification, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015, pp. 3973-3981.
    • http://mmlab.ie.cuhk.edu.hk/datasets/comp_cars/index.html
  • VLD-45:

VLF-net for classification (Vehicle logo feature extraction network)

  • Training with the classification pipeline

    • training XMU dataset
    python train.py --dataset_name XMU --framework Classification_Network
    
    • training HFUT-VL1 dataset
    python train.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • training HFUT-VL2 dataset
    python train.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • training CompCars dataset
    python train.py --dataset_name CompCars --framework Classification_Network
    
    • training VLD-45 dataset
    python train.py --dataset_name VLD-45 --framework Classification_Network
    
  • Testing with the classification pipeline

    • testing XMU dataset
    python test.py --dataset_name XMU --framework Classification_Network
    
    • testing HFUT-VL1 dataset
    python test.py --dataset_name HFUT_VL1 --framework Classification_Network
    
    • testing HFUT-VL2 dataset
    python test.py --dataset_name HFUT_VL2 --framework Classification_Network
    
    • testing CompCars dataset
    python test.py --dataset_name CompCars --framework Classification_Network
    
    • testing VLD-45 dataset
    python test.py --dataset_name VLD-45 --framework Classification_Network
    

VLF-net for category-consistent mask learning

  • Step 1:

    • Generation of the category-consistent masks. There are more details for the co-localization method PSOL.
    • Please note that we use the generated binary-masks directly instead of the predicted boxes.
  • Step 2:

    • After generating the category-consistent masks, we can further organize the training and testing data which are as below:
    root/
          test/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          train/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
          mask/
              dog/xxx.png
              dog/xxz.png
              cat/123.png
              cat/nsdf3.png
    
    Note that each image has the corresponding generated category-consistent mask.
  • Step 3:

    • Now, you can training the model with the category-consistent mask learning framework

    • Training with the category-consistent deep network learning framework pipeline

      • training XMU dataset
      python train.py --dataset_name XMU --framework CCML_Network
      
      • training HFUT-VL1 dataset
      python train.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • training HFUT-VL2 dataset
      python train.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • training CompCars dataset
      python train.py --dataset_name CompCars --framework CCML_Network
      
      • training VLD-45 dataset
      python train.py --dataset_name VLD-45 --framework CCML_Network
      
    • Testing with the category-consistent deep network learning framework pipeline

      • testing XMU dataset
      python test.py --dataset_name XMU --framework CCML_Network
      
      • testing HFUT-VL1 dataset
      python test.py --dataset_name HFUT_VL1 --framework CCML_Network
      
      • testing HFUT-VL2 dataset
      python test.py --dataset_name HFUT_VL2 --framework CCML_Network
      
      • testing CompCars dataset
      python test.py --dataset_name CompCars --framework CCML_Network
      
      • testing VLD-45 dataset
      python test.py --dataset_name VLD-45 --framework CCML_Network
      

Experiments

Image

Image

Bibtex

  • If you find our code useful, please cite our paper:
    @article{LU2021,
    title = {Category-consistent deep network learning for accurate vehicle logo recognition},
      journal = {Neurocomputing},
      year = {2021},
      issn = {0925-2312},
      doi = {https://doi.org/10.1016/j.neucom.2021.08.030},
      url = {https://www.sciencedirect.com/science/article/pii/S0925231221012145},
      author = {Wanglong Lu and Hanli Zhao and Qi He and Hui Huang and Xiaogang Jin}
      }
    

Acknowledgements

Owner
Wanglong Lu
I am a Ph.D. student at Ubiquitous Computing and Machine Learning Research Lab (UCML), Memorial University of Newfoundland.
Wanglong Lu
A short and easy PyTorch implementation of E(n) Equivariant Graph Neural Networks

Simple implementation of Equivariant GNN A short implementation of E(n) Equivariant Graph Neural Networks for HOMO energy prediction. Just 50 lines of

Arsenii Senya Ashukha 97 Dec 23, 2022
🐤 Nix-TTS: An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation

🐤 Nix-TTS An Incredibly Lightweight End-to-End Text-to-Speech Model via Non End-to-End Distillation Rendi Chevi, Radityo Eko Prasojo, Alham Fikri Aji

Rendi Chevi 156 Jan 09, 2023
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Learning to Bootstrap for Combating Label Noise This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise

21 Apr 09, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

Code for "Unsupervised Source Separation via Bayesian inference in the latent domain"

LQVAE-separation Code for "Unsupervised Source Separation via Bayesian inference in the latent domain" Paper Samples GT Compressed Separated Drums GT

Michele Mancusi 30 Oct 25, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022