Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Overview

Improving-Adversarial-Transferability-of-Vision-Transformers

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli

arxiv link

demo trm

Abstract: Vision transformers (ViTs) process input images as sequences of patches via self-attention; a radically different architecture than convolutional neural networks(CNNs). This makes it interesting to study the adversarial feature space of ViT models and their transferability. In particular, we observe that adversarial patterns found via conventional adversarial attacks show very low black-box transferability even for large ViT models. However, we show that this phenomenon is only due to the sub-optimal attack procedures that do not leverage the true representation potential of ViTs. A deep ViT is composed of multiple blocks, with a consistent architecture comprising of self-attention and feed-forward layers, where each block is capable of independently producing a class token. Formulating an attack using only the last class token (conventional approach) does not directly leverage the discriminative information stored in the earlier tokens, leading to poor adversarial transferability of ViTs. Using the compositional nature of ViT models, we enhance transferability of existing attacks by introducing two novel strategies specific to the architecture of ViT models.(i) Self-Ensemble:We propose a method to find multiple discriminative pathways by dissecting a single ViT model into an ensemble of networks. This allows explicitly utilizing class-specific information at each ViT block.(ii) Token Refinement:We then propose to refine the tokens to further enhance the discriminative capacity at each block of ViT. Our token refinement systematically combines the class tokens with structural information preserved within the patch tokens. An adversarial attack when applied to such refined tokens within the ensemble of classifiers found in a single vision transformer has significantly higher transferability and thereby brings out the true generalization potential of the ViT’s adversarial space.

Contents

  1. Quickstart
  2. Self-Ensemble
  3. Token Refinement Module
  4. Training TRM
  5. References
  6. Citation

Requirements

pip install -r requirements.txt

Quickstart

(top) To directly run demo transfer attacks using baseline, ensemble, and ensemble with TRM strategies, use following scripts. The path to the dataset must be updated.

./scripts/run_attack.sh

Dataset

We use a subset of the ImageNet validation set (5000 images) containing 5 random samples from each class that are correctly classified by both ResNet50 and ViT-small. This dataset is used for all experiments. This list of images is present in data/image_list.json. In following code, setting the path to the original ImageNet 2012 val set is sufficient; only the subset of images will be used for the evaluation.

Self-Ensemble Strategy

(top) Run transfer attack using our ensemble strategy as follows. DATA_DIR points to the root directory containing the validation images of ImageNet (original imagenet). We support attack types FGSM, PGD, MI-FGSM, DIM, and TI by default. Note that any other attack can be applied on ViT models using the self-ensemble strategy.

python test.py \
  --test_dir "$DATA_DIR" \
  --src_model deit_tiny_patch16_224 \
  --tar_model tnt_s_patch16_224  \
  --attack_type mifgsm \
  --eps 16 \
  --index "all" \
  --batch_size 128

For other model families, the pretrained models will have to be downloaded and the paths updated in the relevant files under vit_models.

Token Refinement Module

(top) For self-ensemble attack with TRM, run the following. The same options are available for attack types and DATA_DIR must be set to point to the data directory.

python test.py \
  --test_dir "$DATA_DIR" \
  --src_model tiny_patch16_224_hierarchical \
  --tar_model tnt_s_patch16_224  \
  --attack_type mifgsm \
  --eps 16 \
  --index "all" \
  --batch_size 128

Pretrained TRM modules

Model Avg Acc Inc Pretrained
DeiT-T 12.43 Link
DeiT-S 15.21 Link
DeiT-B 16.70 Link

Average accuracy increase (Avg Acc Inc) refers to the improvement of discriminativity of each ViT block (measured by top-1 accuracy on ImageNet val set using each block output). The increase after adding TRM averaged across blocks is reported.

Training TRM

(top) For training the TRM module, use the following:

./scripts/train_trm.sh

Set the variables for experiment name (EXP_NAME) used for logging checkpoints and update DATA_PATH to point to the ImageNet 2012 root directory (containing /train and /val folders). We train using a single GPU. We initialize the weights using a pre-trained model and update only the TRM weights.

For using other models, replace the model name and the pretrained model path as below:

python -m torch.distributed.launch \
  --nproc_per_node=1 \
  --master_port="$RANDOM" \
  --use_env train_trm.py \
  --exp "$EXP_NAME" \
  --model "small_patch16_224_hierarchical" \
  --lr 0.01 \
  --batch-size 256 \
  --start-epoch 0 \
  --epochs 12 \
  --data "$DATA_PATH" \
  --pretrained "https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth" \
  --output_dir "checkpoints/$EXP_NAME"

References

(top) Code borrowed from DeiT repository and TIMM library. We thank them for their wonderful code bases.

Citation

If you find our work, this repository, or pretrained transformers with refined tokens useful, please consider giving a star and citation.

@misc{naseer2021improving,
      title={On Improving Adversarial Transferability of Vision Transformers}, 
      author={Muzammal Naseer and Kanchana Ranasinghe and Salman Khan and Fahad Shahbaz Khan and Fatih Porikli},
      year={2021},
      eprint={2106.04169},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
You might also like...
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Official repository for
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Comments
  • ImageNet dataset cannot be loaded

    ImageNet dataset cannot be loaded

    I tested the code (run_attack.sh) and found that I cannot load imagenet dataset. I dug into it and found that maybe its because in dataset.py, in class AdvImageNet: self.image_list is a set loaded with the predifined data/image_list.json, so an element string in it looks like this: n01820546/ILSVRC2012_val_00027008.JPEG Nonetheless, the is_valid_file function used in super init keeps only the last 38 char of the image file path, like ILSVRC2012_val_00027008.JPEG , to check if it's listed in self.image_list. Thus, the function will always return false as there is no class folder in the string, and no image will be loaded.

    A simple workaround will work (at least I've tested):

    class AdvImageNet(torchvision.datasets.ImageFolder):
    
        def __init__(self, image_list="data/image_list.json", *args, **kwargs):
            self.image_list = list(json.load(open(image_list, "r"))["images"])
            for i in range(len(self.image_list)):
                self.image_list[i] = self.image_list[i].split('/')[1]
            super(AdvImageNet, self).__init__(
                is_valid_file=self.is_valid_file, *args, **kwargs)
    
        def is_valid_file(self, x: str) -> bool:
            return x[-38:] in self.image_list
    

    Another possibility is that the imagenet structure used by this repo is different from mine:

      val/ <-- designated as DATA_DIR in run_attack.sh
        n01820546/
          ILSVRC2012_val_00027008.JPEG
    

    In this case, could you specify how the dataset should be structured? Thank you!

    opened by HigasaOR 5
Releases(v0)
Owner
Muzammal Naseer
PhD student at Australian National University.
Muzammal Naseer
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Curvlearn, a Tensorflow based non-Euclidean deep learning framework.

English | 简体中文 Why Non-Euclidean Geometry Considering these simple graph structures shown below. Nodes with same color has 2-hop distance whereas 1-ho

Alibaba 123 Dec 12, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
dualPC.R contains the R code for the main functions.

dualPC.R contains the R code for the main functions. dualPC_sim.R contains an example run with the different PC versions; it calls dualPC_algs.R whic

3 May 30, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Machine Learning Model deployment for Container (TensorFlow Serving)

try_tf_serving ├───dataset │ ├───testing │ │ ├───paper │ │ ├───rock │ │ └───scissors │ └───training │ ├───paper │ ├───rock

Azhar Rizki Zulma 5 Jan 07, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022