R3Det based on mmdet 2.19.0

Overview

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

License arXiv

Installation

# install mmdetection first if you haven't installed it yet. (Refer to mmdetection for details.)
pip install mmdet==2.19.0

# install r3det (Compiling rotated ops is a little time-consuming.)
pip install -r requirements.txt
pip install -v -e .
  • It is best to use opencv-python greater than 4.5.1 because its angle representation has been changed in 4.5.1. The following experiments are all run with 4.5.3.

Quick Start

Please change path in configs to your data path.

# train
CUDA_VISIBLE_DEVICES=0 PORT=29500 \
./tools/dist_train.sh configs/rretinanet/rretinanet_obb_r50_fpn_1x_dota_v3.py 1

# submission
CUDA_VISIBLE_DEVICES=0 PORT=29500 \
./tools/dist_test.sh configs/rretinanet/rretinanet_obb_r50_fpn_1x_dota_v3.py \
        work_dirs/rretinanet_obb_r50_fpn_1x_dota_v3/epoch_12.pth 1 --format-only\
        --eval-options submission_dir=work_dirs/rretinanet_obb_r50_fpn_1x_dota_v3/Task1_results

For DOTA dataset, please crop the original images into 1024×1024 patches with an overlap of 200 by run

python tools/split/img_split.py --base_json \
       tools/split/split_configs/split_configs/dota1_0/ss_trainval.json

python tools/split/img_split.py --base_json \
       tools/split/split_configs/dota1_0/ss_test.json

Please change path in ss_trainval.json, ss_test.json to your path. (Forked from BboxToolkit, which is faster then DOTA_Devkit.)

Angle Representations

Three angle representations are built-in, which can freely switch in the config.

  • v1 (from R3Det): [-PI/2, 0)
  • v2 (from S2ANet): [-Pi/4, 3PI/4)
  • v3 (from OBBDetection): [-PI/2, PI/2)

The differences of the three angle representations are reflected in poly2obb, obb2poly, obb2xyxy, obb2hbb, hbb2obb, etc. [More], And according to the above three papers, the coders of them are different.

  • DeltaXYWHAOBBoxCoder
    • v1:None
    • v2:Constrained angle + Projection of dx and dy + Normalized with PI
    • v3:Constrained angle and length&width + Projection of dx and dy
  • DeltaXYWHAHBBoxCoder
    • v1:None
    • v2:Constrained angle + Normalized with PI
    • v3:Constrained angle and length&width + Normalized with 2PI

We believe that different coders are the key reason for the different baselines in different papers. The good news is that all the above coders can be freely switched in R3Det. In addition, R3Det also provide 4 NMS ops and 3 IoU_Calculators for rotation detection as follows:

  • nms.type
    • v1:v1
    • v2:v2
    • v3:v3
    • mmcv: mmcv
  • iou_calculator
    • v1:RBboxOverlaps2D_v1
    • v2:RBboxOverlaps2D_v2
    • v3:RBboxOverlaps2D_v3

Performance

DOTA1.0 (Task1)
Model Backbone Lr schd MS RR Angle box AP Official Download
RRetinaNet HBB R50-FPN 1x - - v1 65.19 65.73 Baidu:0518/Google
RRetinaNet OBB R50-FPN 1x - - v3 68.20 69.40 Baidu:0518/Google
RRetinaNet OBB R50-FPN 1x - - v2 68.64 68.40 Baidu:0518/Google
R3Det R50-FPN 1x - - v1 70.41 70.66 Baidu:0518/Google
R3Det* R50-FPN 1x - - v1 70.86 - Baidu:0518/Google
  • MS means multiple scale image split.
  • RR means random rotation.

Citation

@inproceedings{yang2021r3det,
    title={R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object},
    author={Yang, Xue and Yan, Junchi and Feng, Ziming and He, Tao},
    booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
    volume={35},
    number={4},
    pages={3163--3171},
    year={2021}
}

Owner
SJTU-Thinklab-Det
SJTU-Thinklab-Det
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Hui-Po Wang 46 Sep 05, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
TensorFlow implementation of ENet

TensorFlow-ENet TensorFlow implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. This model was tested on th

Kwotsin 255 Oct 17, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control

DeepFaceEditing: Deep Face Generation and Editing with Disentangled Geometry and Appearance Control One version of our system is implemented using the

260 Nov 28, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Tensorflow implementation of soft-attention mechanism for video caption generation.

SA-tensorflow Tensorflow implementation of soft-attention mechanism for video caption generation. An example of soft-attention mechanism. The attentio

Paul Chen 153 Nov 14, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
This is a collection of our NAS and Vision Transformer work.

This is a collection of our NAS and Vision Transformer work.

Microsoft 828 Dec 28, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022