Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

Related tags

Deep LearningJMedSeg
Overview

THU模式识别2021春 -- Jittor 医学图像分割

模型列表

本仓库收录了课程作业中同学们采用jittor框架实现的如下模型:

  • UNet
  • SegNet
  • DeepLab V2
  • DANet
  • EANet
  • HarDNet及其改动HarDNet_alter
  • PSPNet
  • OCNet
  • OCRNet
  • DLinkNet
  • AttentionUNet
  • UNet++
  • UNet+++
  • DenseUNet
  • TernausNet
  • CSNet
  • SCSENet
  • U2Net
  • U2Net-small(轻量化的U2Net)
  • Multi-ResUNet
  • R2 UNet
  • R2 Attention UNet
  • LightNet
  • OneNet(轻量化的UNet)
  • CENet
  • LRF-EANet
  • SimpleUNet
  • SETR

课程同学提出的优秀方案

增加小模型的鲁棒性

成员:汪元标,黄翰,李响,郑勋

  • Spatial Transformer Network(STN)

    通过对图片做自适应的仿射变换提高模型的鲁棒性

    其中Localization Network采用了多层卷积block的结构,输出通道数分别为8, 16, 32, 64,每个block包括一个3x3的二维卷积,BatchNorm层以及ReLU激活函数,最后经过一个Adaptive Average Pool层实现对多尺寸的支持,参见 advance/stn.py

  • 对比学习自监督预训练

    为了学习CT图像的Latent Feature,采用了对比学习的算法,使用了InfoNCE作为损失函数,采用Memory Bank来采样负例。

  • 数据增强

    采取了颜色空间的变换,包含亮度、对比度、色相、色调的随机变换。

  • 效果

    经过改动后的UNet有很好的鲁棒性。即使是智能手机拍摄的照片也可以很好地识别

  • demo

    • 参见清华云盘链接

    • 用法

      > export FLASK_APP='app.py'
      > python -m flask run -p [PORT]

轻量化模型

游嘉诚

为了降低参数量,考虑使用组卷积(group conv),然而组卷积限制了通道之间的信息交流。传统channel shuffle 限制了各 group 信息交流的表达力,同时内存访问连续性差或MACS大。于是提出了领域通道平移(channel shift),即通道顺序平移0.5*group,保证各组只与邻域交流,也许可能使得关系密切的组也许会趋向聚在一起。网络开始使用$4\times4$卷积核和stride=4进行四倍下采样,最终使用转置卷积ConvTranspose进行4倍上采样。类似densenet思想,网络将特征图进行通道拼接后进行转置卷积上采样。

二、数据

腰椎骨松质分割数据集

协和医院和中山医院分别提供了腰椎数据集,经过同学们的标注,从协和数据集中划分出了训练集、验证集和测试集。

协和数据集选择并标注了腰椎3,腰椎4的CT片,其中:

  • 训练集:包含85人共计1442张腰椎CT片

  • 验证集:包含31人共计549张腰椎CT片

  • 测试集:包含36人共计615张腰椎CT片

下图展示了协和数据集的样例

中山数据集被用于测试模型的跨数据集泛化性能,中山数据集包含大图和小图两种类型,选择并标注了腰椎1,腰椎2的CT片。其中:

  • 大图:包含134人共计858张腰椎CT片

  • 小图:包含134人共计868张腰椎CT片

下图分别是中山数据集的大图和小图样例

胰腺分割数据集

胰腺分割数据集包含

  • 训练集:包含8人共计1720张CT片

  • 验证集:包含2人共计424张CT片

  • 测试集:包含2人共计401张CT片

下载地址

清华云盘 数据下载成功后将压缩包解压为 ./data 文件夹即可。

运行方法

  1. 配置相应环境,安装Jittor最新版本

  2. 下载数据集

  3. 下载一些模型必须的ImageNet预训练权重,并解压至model/目录下.

  4. 如想要使用训练好的模型参数,可在这里下载胰腺数据上训练完成的模型参数,也可以先下载可视化结果先观察模型效果。

  5. 运行训练/测试/可视化

usage: run.py [-h]
              [--model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}]
              [--pretrain] [--checkpoint CHECKPOINT] --dataset
              {xh,xh_hard,zs_big,zs_small,pancreas} --mode
              {train,test,predict,debug} [--load LOAD] [--aug] [--cuda]
              [--stn] [-o {Adam,SGD}] [-e EPOCHS] [-b BATCH_SIZE] [-l LR]
              [-c CLASS_NUM] [--loss LOSS] [-w BCE_WEIGHT] [-r RESULT_DIR]
              [--poly]

optional arguments:
  -h, --help            show this help message and exit
  --model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}
                        choose the model
  --pretrain            whether to use pretrained weights
  --checkpoint CHECKPOINT
                        the location of the pretrained weights
  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                        choose a dataset
  --mode {train,test,predict,debug}
                        select a mode
  --load LOAD           the location of the model weights for testing
  --aug                 whether to use color augmentation
  --cuda                whether to use CUDA acceleration
  --stn                 whether to use spatial transformer network
  -o {Adam,SGD}, --optimizer {Adam,SGD}
                        select an optimizer
  -e EPOCHS, --epochs EPOCHS
                        num of training epochs
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        batch size for training
  -l LR, --learning-rate LR
                        learning rate
  -c CLASS_NUM, --class-num CLASS_NUM
                        pixel-wise classes
  --loss LOSS           Choose from 'ce', 'iou', 'dice', 'focal', if CE loss
                        is selected, you should use a `weight` parameter
  -w BCE_WEIGHT         use this weight if BCE loss is selected; if w is
                        given, then the weights for positive and negative
                        classes will be w and 2.0 - w respectively
  -r RESULT_DIR, --resultdir RESULT_DIR
                        test result output directory
  --poly                whether to use polynomial learning rate scheduler
  1. 运行对比学习预训练
usage: run_ssl.py [-h]
                  [--model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}]
                  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                  [--save SAVE] [-e EPOCHS] [-c CLASS_NUM] [-b BATCH_SIZE]
                  [--channel EMBEDDING_CHANNEL] [--layer LAYER] [--lr LR]
                  [--pretrain]

optional arguments:
  -h, --help            show this help message and exit
  --model {unet,hrnet,setr,unet3p,segnet,hardnet,deeplab,pspnet,danet,eanet,ocrnet,resunet,ocnet,attunet,dense,dlink,ternaus,scseunet,r2,r2att,csnet,unetpp,unetppbig,multires,u2net,u2netp,onenet,lightnet,cenet,setr,hardalter,lrfea,simple}
                        choose a model network
  --dataset {xh,xh_hard,zs_big,zs_small,pancreas}
                        select a dataset
  --save SAVE           model weights save path
  -e EPOCHS, --epochs EPOCHS
                        number of training epochs
  -c CLASS_NUM, --class-num CLASS_NUM
                        class number
  -b BATCH_SIZE, --batch-size BATCH_SIZE
                        training batch size
  --channel EMBEDDING_CHANNEL
                        number of channels of embedded feature maps
  --layer LAYER         layer to extract features from
  --lr LR               learning rate
  --pretrain

运行示例 参见train.sh, batch_test.sh, pretrain.sh

四、实验结果

胰腺分割数据集

各模型均采用相同超参数,学习率为3e-4,迭代次数50次,以权重为[0.8, 0.2]的交叉熵损失函数进行训练,参见train.sh中dataset为pancreas的部分。结果如下:

Model Dice mIoU
UNet 0.7292 0.6477
SegNet 0.6291 0.5726
DeepLab 0.8306 0.7467
DANet 0.7787 0.6928
EANet 0.6753 0.6055
HarDNet 0.7491 0.6654
HarDNet_alter 0.7779 0.6920
PSPNet 0.7772 0.6914
OCNet 0.7789 0.6930
OCRNet 0.7034 0.6272
DLinkNet 0.4995 0.4989
AttentionUNet 0.7691 0.6836
UNet++ 0.8282 0.7439
UNet+++ 0.7892 0.7030
DenseUNet 0.8053 0.7194
TernausNet 0.6752 0.6055
CSNet 0.4994 0.4989
SCSENet 0.4994 0.4989
U2Net 0.8143 0.7289
U2Net-Small 0.8338 0.7502
Multi-ResUnet 0.7230 0.6427
R2UNet 0.8289 0.7447
R2AttentionUNet 0.8084 0.7227
LightNet 0.8006 0.7145
OneNet 0.7754 0.6896
CENet 0.7583 0.6735
LRF-EANet 0.6942 0.6197
SimpleUNet 0.7395 0.6569
SETR 0.4994 0.4989
UNet-SSL 0.8026 0.7165
UNet-STN-SSL 0.7926 0.7063
UNet-Aug-STN-SSL 0.6938 0.6192

腰椎骨松质分割数据集

  1. 协和数据集

    下表展示了三种模型使用不同损失函数及加权组合的结果

    mIoU CE IoU Dice Focal 0.8CE+0.2IoU 0.5CE+0.5IoU 0.2CE+0.8IoU 0.5CE+0.5Dice
    UNet 95.49 95.56 95.41 95.43 95.48 95.25 95.42 95.17
    HRnet 95.22 95.23 N/A N/A
    SETR 87.59 87.81 85.92 83.85 88.34 83.94 87.52 87.78
  2. 中山数据集

    下表记录了协和数据集上训练的OneNet模型在中山数据集上的表现

CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
A Python package for causal inference using Synthetic Controls

Synthetic Control Methods A Python package for causal inference using synthetic controls This Python package implements a class of approaches to estim

Oscar Engelbrektson 107 Dec 28, 2022
Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark

Universal Adversarial Examples in Remote Sensing: Methodology and Benchmark Yong

19 Dec 17, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Demo for Real-time RGBD-based Extended Body Pose Estimation paper

Real-time RGBD-based Extended Body Pose Estimation This repository is a real-time demo for our paper that was published at WACV 2021 conference The ou

Renat Bashirov 118 Dec 26, 2022
Laplace Redux -- Effortless Bayesian Deep Learning

Laplace Redux - Effortless Bayesian Deep Learning This repository contains the code to run the experiments for the paper Laplace Redux - Effortless Ba

Runa Eschenhagen 28 Dec 07, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
Teaching end to end workflow of deep learning

Deep-Education This repository is now available for public use for teaching end to end workflow of deep learning. This implies that learners/researche

Data Lab at College of William and Mary 2 Sep 26, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
202 Jan 06, 2023
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023