Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Overview

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?"

Install // Datasets // Experiments // Models // License // Reference

Full video

Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Installation

We recommend using docker (see nvidia-docker2 instructions) to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04):

git clone https://github.com/TRI-ML/dd3d.git
cd dd3d
# If you want to use docker (recommended)
make docker-build # CUDA 10.2
# Alternative docker image for cuda 11.1
# make docker-build DOCKERFILE=Dockerfile-cu111

Please check the version of your nvidia driver and cuda compatibility to determine which Dockerfile to use.

We will list below all commands as if run directly inside our container. To run any of the commands in a container, you can either start the container in interactive mode with make docker-dev to land in a shell where you can type those commands, or you can do it in one step:

# single GPU
make docker-run COMMAND="<some-command>"
# multi GPU
make docker-run-mpi COMMAND="<some-command>"

If you want to use features related to AWS (for caching the output directory) and Weights & Biases (for experiment management/visualization), then you should create associated accounts and configure your shell with the following environment variables before building the docker image:

export AWS_SECRET_ACCESS_KEY="<something>"
export AWS_ACCESS_KEY_ID="<something>"
export AWS_DEFAULT_REGION="<something>"
export WANDB_ENTITY="<something>"
export WANDB_API_KEY="<something>"

You should also enable these features in configuration, such as WANDB.ENABLED and SYNC_OUTPUT_DIR_S3.ENABLED.

Datasets

By default, datasets are assumed to be downloaded in /data/datasets/<dataset-name> (can be a symbolic link). The dataset root is configurable by DATASET_ROOT.

KITTI

The KITTI 3D dataset used in our experiments can be downloaded from the KITTI website. For convenience, we provide the standard splits used in 3DOP for training and evaluation:

# download a standard splits subset of KITTI
curl -s https://tri-ml-public.s3.amazonaws.com/github/dd3d/mv3d_kitti_splits.tar | sudo tar xv -C /data/datasets/KITTI3D

The dataset must be organized as follows:

<DATASET_ROOT>
    └── KITTI3D
        ├── mv3d_kitti_splits
        │   ├── test.txt
        │   ├── train.txt
        │   ├── trainval.txt
        │   └── val.txt
        ├── testing
        │   ├── calib
        |   │   ├── 000000.txt
        |   │   ├── 000001.txt
        |   │   └── ...
        │   └── image_2
        │       ├── 000000.png
        │       ├── 000001.png
        │       └── ...
        └── training
            ├── calib
            │   ├── 000000.txt
            │   ├── 000001.txt
            │   └── ...
            ├── image_2
            │   ├── 000000.png
            │   ├── 000001.png
            │   └── ...
            └── label_2
                ├── 000000.txt
                ├── 000001.txt
                └── ..

nuScenes

The nuScenes dataset (v1.0) can be downloaded from the nuScenes website. The dataset must be organized as follows:

<DATASET_ROOT>
    └── nuScenes
        ├── samples
        │   ├── CAM_FRONT
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT__1526915243012465.jpg
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT__1526915243512465.jpg
        │   │   ├── ...
        │   │  
        │   ├── CAM_FRONT_LEFT
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT_LEFT__1526915243004917.jpg
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT_LEFT__1526915243504917.jpg
        │   │   ├── ...
        │   │  
        │   ├── ...
        │  
        ├── v1.0-trainval
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...
        │  
        ├── v1.0-test
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...
        │  
        ├── v1.0-mini
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...

Pre-trained DD3D models

The DD3D models pre-trained on dense depth estimation using DDAD15M can be downloaded here:

backbone download
DLA34 model
V2-99 model

(Optional) Eigen-clean subset of KITTI raw.

To train our Pseudo-Lidar detector, we curated a new subset of KITTI (raw) dataset and use it to fine-tune its depth network. This subset can be downloaded here. Each row contains left and right image pairs. The KITTI raw dataset can be download here.

Validating installation

To validate and visualize the dataloader (including data augmentation), run the following:

./scripts/visualize_dataloader.py +experiments=dd3d_kitti_dla34 SOLVER.IMS_PER_BATCH=4

To validate the entire training loop (including evaluation and visualization), run the overfit experiment (trained on test set):

./scripts/train.py +experiments=dd3d_kitti_dla34_overfit
experiment backbone train mem. (GB) train time (hr) train log Box AP (%) BEV AP (%) download
config DLA-34 6 0.25 log 84.54 88.83 model

Experiments

Configuration

We use hydra to configure experiments, specifically following this pattern to organize and compose configurations. The experiments under configs/experiments describe the delta from the default configuration, and can be run as follows:

# omit the '.yaml' extension from the experiment file.
./scripts/train.py +experiments=<experiment-file> <config-override>

The configuration is modularized by various components such as datasets, backbones, evaluators, and visualizers, etc.

Using multiple GPUs

The training script supports (single-node) multi-GPU for training and evaluation via mpirun. This is most conveniently executed by the make docker-run-mpi command (see above). Internally, IMS_PER_BATCH parameters of the optimizer and the evaluator denote the total size of batch that is sharded across available GPUs while training or evaluating. They are required to be set as a multuple of available GPUs.

Evaluation

One can run only evaluation using the pretrained models:

./scripts/train.py +experiments=<some-experiment> EVAL_ONLY=True MODEL.CKPT=<path-to-pretrained-model>
# use smaller batch size for single-gpu
./scripts/train.py +experiments=<some-experiment> EVAL_ONLY=True MODEL.CKPT=<path-to-pretrained-model> TEST.IMS_PER_BATCH=4

Gradient accumulation

If you have insufficient GPU memory for any experiment, you can use gradient accumulation by configuring ACCUMULATE_GRAD_BATCHES, at the cost of longer training time. For instance, if the experiment requires at least 400 of GPU memory (e.g. V2-99, KITTI) and you have only 128 (e.g., 8 x 16G GPUs), then you can update parameters at every 4th step:

# The original batch size is 64.
./scripts/train.py +experiments=dd3d_kitti_v99 SOLVER.IMS_PER_BATCH=16 SOLVER.ACCUMULATE_GRAD_BATCHES=4

Models

All experiments here use 8 A100 40G GPUs, and use gradient accumulation when more GPU memory is needed. We subsample nuScenes validation set by a factor of 8 (2Hz ⟶ 0.25Hz) to save training time.

KITTI

experiment backbone train mem. (GB) train time (hr) train log Box AP (%) BEV AP (%) download
config DLA-34 256 4.5 log 16.92 24.77 model
config V2-99 400 9.0 log 23.90 32.01 model

nuScenes

experiment backbone train mem. (GB) train time (hr) train log mAP (%) NDS download
config DLA-34 TBD TBD TBD) TBD TBD TBD
config V2-99 TBD TBD TBD TBD TBD TBD

License

The source code is released under the MIT license. We note that some code in this repository is adapted from the following repositories:

Reference

@inproceedings{park2021dd3d,
  author = {Dennis Park and Rares Ambrus and Vitor Guizilini and Jie Li and Adrien Gaidon},
  title = {Is Pseudo-Lidar needed for Monocular 3D Object detection?},
  booktitle = {IEEE/CVF International Conference on Computer Vision (ICCV)},
  primaryClass = {cs.CV},
  year = {2021},
}
Owner
Toyota Research Institute - Machine Learning
Toyota Research Institute - Machine Learning
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

Online Pseudo Label Generation by Hierarchical Cluster Dynamics for Adaptive Person Re-identification

TANG, shixiang 6 Nov 25, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Deep Learning as a Cloud API Service.

Deep API Deep Learning as Cloud APIs. This project provides pre-trained deep learning models as a cloud API service. A web interface is available as w

Wu Han 4 Jan 06, 2023
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Benchmarks for Object Detection in Aerial Images

Benchmarks for Object Detection in Aerial Images

Jian Ding 691 Dec 30, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023
Implementation of ICCV2021(Oral) paper - VMNet: Voxel-Mesh Network for Geodesic-aware 3D Semantic Segmentation

VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation Created by Zeyu HU Introduction This work is based on our paper VMNet: Voxel-Mes

HU Zeyu 82 Dec 27, 2022
Classification models 1D Zoo - Keras and TF.Keras

Classification models 1D Zoo - Keras and TF.Keras This repository contains 1D variants of popular CNN models for classification like ResNets, DenseNet

Roman Solovyev 12 Jan 06, 2023
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022