Incomplete easy-to-use math solver and PDF generator.

Overview

Math Expert

Let me do your work

Preview

preview.mp4

Introduction

Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduation project. The project tackles the problem of generating beautiful, quick, and useful mathematics. While most software can either only generate beautiful formatted PDF (i.e. LaTeX) or sufficiently solve mathematical problems (e.g. Wolfram|Alpha). There may be, however, alternatives to these tools, yet they can not fully grasp the potential of either of them or are slow and hard to use. Therefore, this project tries to do what others failed.

Inner Workings

Our approach was to create an easy-to-use graphical user interface (GUI) that uses different components to reach our goal. LaTeX is the main PDF generation backend due to its indubitable abilities and speed; it is the universal standard for mathematical notation. However, it is reasonably hard to use making it difficult to use in a short-term practical context. This makes the application even more useful. It was mainly interacted with through PyLaTeX; it provides a usable set of commands that make use of LaTeX's capabilities. The standard article document class with numbered math alignment environment and TikZ drawings was used.

Although both SymPy and NumPy were used, the focus was on SymPy due to its nature of symbolic manipulation and its alignment with the goals of the project. The latter is powerful in mathematical evaluations, which — although supported — is not the focus of this project. The results of all functions, other than Evaluate, are performed through SymPy. It provides more than one function to perform some of the operations at hand, but the one that proves to be the most effective is used. For example, there are integrate and manualintegrate, and although the latter can show steps (non-human-readable), the former was chosen for its wide variety of solutions.

Unlike the previous two, the choice of a GUI framework was not a straightforward decision. Kivy was a serious candidate, but due to its own unique syntax for designing being its bedrock and lack of some convenient Python capabilities use, it was not feasible. Another option was Tkinter, which is considered the main framework for Python. However, it is very lacking some modern UI design features and is not plain sailing in some considerable aspects. The final option was PyQt5, which is a Python binding for the Qt cross-platform framework. Basically utilizing all of the powerful aspects of the Qt framework, which avoids the aforementioned limitations, while maintaining a usable toolkit. A highly programmable interface that is easily integrable into other environments was the product of this decision.

Philosophy

Although the infamous it just works are spread throughout the codebase, which is not ideal for a structured project, the goal of our is to define a great code that follows best practices (e.g. PEP 8) to have a readable, maintainable, and legacy-free codebase to stand in the way of passing time for the longest. As such, a minimal amount of code is necessary to avoid using breakable functions; a suitable modus operandi is the suckless philosophy. On the other hand, extensibility and customizability are as important. Unix philosophy is the one method that is well-regarded as the jewel in the crown.

Object orientation was used due to its inheritance, encapsulation, and other proprieties; some of which can not be achieved through modularity alone resulting in a more complex codebase. In addition, the structural way PyLaTeX handles documents would make it even harder to avoid object-oriented programming, despite its known disadvantages. However, parts of SymPy and NumPy code were written more procedurally.

Codebase

As mentioned above, the goals of the code are minimalism, functionality, extensibility, and customizability. The program is divided into 3 separate files: gui.py for all of the UI elements, func.py for all the operations on documents, and main.py for the main program and linking of the two. This was to ease the switching of undesired modules and separate development based on the working context.

func.py was mainly structured as one class (MathDoc) with multiple methods for document manipulation (e.g. Inte, Diff, etc). The class is instantiated and used in main.py in the __name__ == "__main__" if statement after the imports outside the conditional; on every button click the corresponding method is called. In contrast, explicit mentions of gui.py are rare (besides the linkage ones) since all of its handlings is in the file itself.

Properties

Advantages

  • Easy-to-use
  • Fast
  • Accurate
  • Concise Formatting
  • Extensible
  • Programmable

Disadvantages

  • poor error handling
  • limited syntax input
  • limited operations
  • no-preview before add
  • undoable actions

Neutral

  • Unappealing UI
  • No indication when unsolvable

Future plans

See issues

Usage

Although the interface is obvious, some clarifications may need to be made.

  • First text input is the file name without extension
  • Second text input is the document title
  • Third text input is the author(s) title
  • Fourth (and last) text input is the mathematical expression to be operated on
    • Euler's number should be written as exp(x) instead of e^(x)
    • log is the natural logarithm.
    • Multiplication should be written in the form 2*x
  • After defining all the previous inputs, click Generate PDF
  • Choose the type of operation you want to perform, then click Generate PDF again

Dependences

Building

Running

COCOMO estimates

Using scc

───────────────────────────────────────────────────────────────────────────────
Language                 Files     Lines   Blanks  Comments     Code Complexity
───────────────────────────────────────────────────────────────────────────────
Python                       4       465       36        24      405         17
───────────────────────────────────────────────────────────────────────────────
Total                        4       465       36        24      405         17
───────────────────────────────────────────────────────────────────────────────
Estimated Cost to Develop (organic) $10,457
Estimated Schedule Effort (organic) 2.431055 months
Estimated People Required (organic) 0.382159
───────────────────────────────────────────────────────────────────────────────
Processed 19228 bytes, 0.019 megabytes (SI)
───────────────────────────────────────────────────────────────────────────────
Comments
  • Better logs

    Better logs

    They look ugly and increase loc with a lot of repetition. I am not used to using it so it will take me some time until I discover how to get around the logs.

    enhancement 
    opened by salastro 2
  • Code refactoring

    Code refactoring

    Some aspects of the code are written badly.

    For reference:

    • https://stackoverflow.com/questions/20873259/pyqt-how-to-dynamically-update-widget-property-on-outer-variable-value-change
    enhancement 
    opened by salastro 2
  • Automated tests

    Automated tests

    They basically exist in the __main__ in func.py For reference:

    • https://www.youtube.com/watch?v=DhUpxWjOhME
    • https://stackoverflow.com/questions/27954702/unittest-vs-pytest
    • https://docs.python.org/3/library/unittest.html
    • https://docs.pytest.org/
    enhancement 
    opened by salastro 1
  • Better define methods in `main.py`

    Better define methods in `main.py`

    Currently, exec is used, which is very unpythonic and inefficient. There should be a way to get all the functions in the func.py and link them accordingly.

        operations = ["inte", "diff", "lim", "fact", "sol",
                      "simp", "eval", "plot", "generate_pdf", "generate_latex"]
    
        for func in operations:
            exec(f"""
                \[email protected]()
                \ndef on_{func}_bt_clicked(self):
                \n    self.mathdoc.{func}(self.expression.toPlainText().\
                    replace(" ", ""))
            """)
    
    bug 
    opened by salastro 1
  • Show steps

    Show steps

    Since the functions that do not operate on a human level are more advanced in solving problems, it would be great if it is possible to check if the problem is solvable with human steps and then use the function that shows the results. Mainly integration and differentiation are my concern.

    enhancement 
    opened by salastro 0
  • Integration hangs

    Integration hangs

    Sometimes when integration is unsolvable (even by other more advanced calculators) it just halts.

    Possible solutions are:

    • restricting the computational resources of the process
    • adding a timeout (e.g. of 10 seconds) for the process
    • creating an external watchdog for the management of the program flow
    bug 
    opened by salastro 1
  • LaTeX dependency

    LaTeX dependency

    Tests on my machine went smoothly on both Linux and Windows. However, it was not as smooth for both @marawan-mogeb and @younis-tarek. The only unique thing in my setup on both OSs is having LaTeX (texlive-full on void Linux and MikTeX on Windows) while both do not. The size of a TeX distro is yet to be confirmed, but since there is no advanced PDF formatting (e.g. Arabic support) TinyTeX should work. @younis-tarek plans to further test this in the future.

    bug documentation 
    opened by salastro 2
Releases(0.2)
Owner
SalahDin Ahmed
A computers magician who uses simple spells.
SalahDin Ahmed
graph-theoretic framework for robust pairwise data association

CLIPPER: A Graph-Theoretic Framework for Robust Data Association Data association is a fundamental problem in robotics and autonomy. CLIPPER provides

MIT Aerospace Controls Laboratory 118 Dec 28, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite.

TFlite Ultra Fast Lane Detection Inference Example scripts for the detection of lanes using the ultra fast lane detection model in Tensorflow Lite. So

Ibai Gorordo 12 Aug 27, 2022
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Minqi 297 Dec 12, 2022
VOS: Learning What You Don’t Know by Virtual Outlier Synthesis

VOS This is the source code accompanying the paper VOS: Learning What You Don’t

248 Dec 25, 2022
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022