Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Related tags

Deep Learningtzer
Overview


ArtifactReproduce BugsQuick StartInstallationExtend Tzer

Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation

This is the source code repo for "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation" (Conditionally accepted by OOPSLA'22).

Artifact

Please check here for detailed documentation of the artifact prepared for OOPSLA'22.

Reproduce Bugs

Till submission, Tzer has been detected 40 bugs for TVM with 30 confirmed and 24 fixed (merged in the latest branch). Due to the anonymous review policy of OOPSLA, the links of actual bug reports will be provided after the review process.

We provide strong reproducibility of our work. To reproduce all bugs, all you need to do is a single click Open In Colab on your browser. Since some bugs need to be triggered by some complex GPU settings, to maximumly ease the hardware and software effort, the bugs are summarized in a Google Colab environment (No GPU required, but just a browser!).

Quick Start

You can easily start using Tzer with docker.

docker run --rm -it tzerbot/oopsla

# Inside the image.
cd tzer
python3 src/main_tir.py --fuzz-time 10     --report-folder ten-minute-fuzz
#                       run for 10 min.    bugs in folder `ten-minute-fuzz`

Successful installation looks like:

Report folder contents [click to expand]
  • cov_by_time.txt: a csv file where columns means "time" (second) and edge coverage;
  • ${BUG_TYPE}_${BUG_ID}.error_message.txt: error message snapshot of failures;
  • ${BUG_TYPE}_${BUG_ID}.ctx: context data to reproduce bugs (stored in Pickle. See config.py)
  • meta.txt: metadata including git version of TVM and experiment time;
  • tir_by_time.pickle: generated <F, P> (i.e., TIR and Passes) files (if TIR_REC=1 is set);
  • valid_seed_new_cov_count.txt: number of generated valid tests with new coverage;
Main commandline options [click to expand]

Commandline options (added as tail of commands):

  • --fuzz-time: Time budget of fuzzing (minute);
  • --tolerance: Parameter $N_{max}$ in the paper (control the interleaving of IR and pass mutation);
  • --report-folder: Path to store results (e.g., coverage trend);

Environment variables to control the algorithm options (added the prefix of commands):

  • PASS=1 to enable pass mutation;
  • NO_SEEDS=1 to disable initial seeds (start from an empty function);
  • NO_COV=1 to disable the coverage feedback;
  • TIR_REC=1to record generated TIR files (for evaluating non-coverage version);
Reproduce ablation study [click to expand]
# (1): General IR Mutation (No Coverage)*
TVM_HOME=$TVM_NO_COV_HOME PYTHONPATH=$TVM_HOME/python TIR_REC=1 NO_COV=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-1
python3 src/get_cov.py --folders ablation-1 # Evaluate samples on instrumented TVM to get coverage results.

# (2): (1) + Coverage Guidance
python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-2

# (3): (2) + Domain-Specific IR Mutation
LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-3

# (4): (3) + Random Pass Mutation
PASS=1 RANDOM_PASS=1 LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-4

# (5): (3) + Evolutionary IR-Pass Mutation
# aka: Best Tzer! Pleasse use this command if you want to compare Tzer with your own system~
PASS=1 LOW=1 python3 src/main_tir.py --fuzz-time 240 --report-folder ablation-5 --tolerance 4

Note that fuzzing is performance-sensitive: To obtain reliable results, evaluation should be conducted in a "clean" environment (e.g., close irrelavant processes as many as possible). To determine how "clean" your environment is, you can log the load average of your Linux system. Expected load average should be around 1 or lower (as what we did in the experiments).

Installation

Expected requirements [click to expand]
  • Hardware: 8GB RAM; 256G Storage; X86 CPU; Good Network to GitHub; Docker (for Docker installation)
  • Software: Linux (tested under Manjaro and Ubuntu20.04. Other Linux distributions should also work)

We provide 3 methods for installing Tzer:

Docker Hub (Recommended, Out-of-the-box!) [click to expand]

Directly run Tzer in pre-built container image! Make sure you have docker installed.

docker run --rm -it tzerbot/oopsla
Docker Build (10~20 min., for customized development) [click to expand]

Build Tzer under a docker environment! Make sure you have docker installed.

  1. git clone https://github.com/Tzer-AnonBot/tzer.git && cd tzer
  2. docker build --tag tzer-oopsla:eval .
  3. docker run --rm -it tzer-oopsla:eval
Manual Build (20~30 min., for customized dev. and native performance) [click to expand]
Build Tzer natively on your Linux:

Prepare dependencies:

# Arch Linux / Manjaro
sudo pacman -Syy
sudo pacman -S compiler-rt llvm llvm-libs compiler-rt clang cmake git python3
# Ubuntu
sudo apt update
sudo apt install -y libfuzzer-12-dev # If you fail, try "libfuzzer-11-dev", "-10-dev", ...
sudo apt install -y clang cmake git python3

Build TVM and Tzer:

git clone https://github.com/Tzer-AnonBot/tzer.git
cd tzer/tvm_cov_patch

# Build TVM with intruments
bash ./build_tvm.sh # If you fail, check the script for step-by-step instruction;
cd ../../../
# If success:
# tvm with coverage is installed under `tvm_cov_patch/tvm`
# tvm without coverage is under `tvm_cov_patch/tvm-no-cov`

# Install Python dependency
python3 -m pip install -r requirements.txt

# Set up TVM_HOME and PYTHONPATH env var before using TVM and Tzer.
export TVM_HOME=$(realpath tvm_cov_patch/tvm)
export TVM_NO_COV_HOME=$(realpath tvm_cov_patch/tvm-no-cov)
export PYTHONPATH=$TVM_HOME/python

Extend Tzer

We implemented many re-usable functionalities for future and open research! To easily implement other coverage-guided fuzzing algorithm for TVM, after your installing TVM with memcov by applying tvm_cov_patch/memcov4tvm.patch to TVM (See tvm_cov_patch/build_tvm.sh), you can get current coverage of TVM by:

from tvm.contrib import coverage

print(coverage.get_now()) # Current visited # of CFG edges
print(coverage.get_total()) # Total number of # of CFG edges

coverage.push() # store current coverage snapshot to a stack and reset it to empty (useful for multi-process scenario)
coverage.pop()  # merge the top snapshot from the stack. 

Usage push-pop combo: Some times the target program might crash, but we don't want the fuzzer to be affected by the failure. Therefore, you can set a "safe guard" by:

  1. push: save current snapshot and reset the coverage hitmap;
  2. raise a sub-process to compile target IR & passes with TVM;
  3. pop: merge the snapshot of the sub-process and last stored snapshot (top of the stack) to get a complete coverage.

Latency of the combo is optimized to ~1ms as we applied bit-level optimization.

Cite Us

Please cite our paper if you find our contributions are helpful. :-)

@inproceedings{tzer-2022,
  title={Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation},
  author={Liu, Jiawei and Wei, Yuxiang and Yang, Sen and Deng, Yinlin and Zhang, Lingming},
  booktitle={Proceedings of the ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications},
  year={2022}
}
You might also like...
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)'

SCL Introduction Code for 'Self-Guided and Cross-Guided Learning for Few-shot segmentation. (CVPR' 2021)' We evaluated our approach using two baseline

Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Releases(tvm-0.8.dev1040)
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Speeding-Up Back-Propagation in DNN: Approximate Outer Product with Memory

Approximate Outer Product Gradient Descent with Memory Code for the numerical experiment of the paper Speeding-Up Back-Propagation in DNN: Approximate

2 Mar 02, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
A simple Neural Network that predicts the label for a series of handwritten digits

Neural_Network A simple Neural Network that predicts the label for a series of handwritten numbers This program tries to predict the label (1,2,3 etc.

Ty 1 Dec 18, 2021
Optimized primitives for collective multi-GPU communication

NCCL Optimized primitives for inter-GPU communication. Introduction NCCL (pronounced "Nickel") is a stand-alone library of standard communication rout

NVIDIA Corporation 2k Jan 09, 2023
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022