Generates, filters, parses, and cleans data regarding the financial disclosures of judges in the American Judicial System

Overview

This repository contains code that gets data regarding financial disclosures from the Court Listener API

  • main.py: contains driver code that interacts with all the other files. Only file that should be run. When run it will grab all the data and populate output.csv with it
  • auth_token.py: Reads API authentication token.
  • AUTH_TOKEN.txt: Contains API authentication token. Obtain yours from here and paste it into this file
  • fields.py: contains the code that grabs all the fields from every disclosure
  • lookups.py: contains some extra lookup tables (aside form the ones embedded in fields.py) for the values returned from the API
  • utils.py: contains some utility functions
  • requirements.txt: contains the list of dependencies used. Install them by running pip install -r requirements.txt
  • README.txt: readme in txt format

Overview

Every year judges file a financial disclosure form as mandated by law. Courtlistener parses these forms which are PDFs into their database. Here is an example of one of the unederlying forms that will help me explain what every row in our data is: https://storage.courtlistener.com/us/federal/judicial/financial-disclosures/9529/patricia-a-sullivan-disclosure.2019.pdf Disclosures are seperated into certain categories, such as positions, or investments. Each individual listing under a certain type of disclosure, is a row in our data. So if you look at that PDF, Member and Officer at Board of Directors of Roger Williams University School of Law, would be the basis for one row. If you scroll down to investments, MFS Investment Management (Educational Funds) (H), would also be the basis for one row. For that row, the fields listed below under Disclosure Fields -> Investments will all be filled out (unless they are not present in the courtlistner database). The Common Fields and Person Fields will also be filled out. Person fields are fields unique to the judge, and common fields unique to the report. So for the two example rows, the common fields and person fields would remain constant (as the judge and report are the same), but the disclosure fields will be different. For the first one, the fields under Disclosure Fields -> Positions will be filled out, with the rest of the disclosure fields empty, and for the second one the fields under Disclosure Fields -> Investments would be filled out.

=============
Common Fields
=============



sha1: SHA1 hash of the generated PDF
is_amended: Is disclosure amended?
Disclosure PDF: PDF of the original filed disclosure
Year Disclosed: Date of judicial agreement.
report_type: Financial Disclosure report type
addendum_redacted: Is the addendum partially or completely redacted?
Disclosure Type: Type of the disclosure, (investments, debts, etc)

=============
Disclosure Fields
=============


Note: Depending on the Disclosure Type field above, the corresponding fields will be filled in for the row


agreements:
        date_raw: Date of judicial agreement.
        parties_and_terms: Parties and terms of agreement (ex. Board Member NY Ballet)
        redacted: Does the agreement row contain redaction(s)?
        financial_disclosure: The financial disclosure associated with this agreement.
        id: ID of the record.
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

debts:
        creditor_name: Liability/Debt creditor
        description: Description of the debt
        value_code: Form code for the value of the judicial debt, substituted with the numerical values of the range.
        value_code_max: The maximum value of the value_code.
        redacted: Does the debt row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

gifts:
        source: Source of the judicial gift. (ex. Alta Ski Area).
        description: Description of the gift (ex. Season Pass).
        value: Value of the judicial gift, (ex. $1,199.00)
        redacted: Does the gift row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

investments:
        page_number: The page number the investment is listed on.  This is used to generate links directly to the PDF page.
        description: Name of investment (ex. APPL common stock).
        redacted: Does the investment row contains redaction(s)?
        income_during_reporting_period_code: Increase in investment value - as a form code. Substituted with the numerical values of the range.
        income_during_reporting_period_code_max: Maximum value of income_during_reporting_period_code.
        income_during_reporting_period_type: Type of investment (ex. Rent, Dividend). Typically standardized but not universally.
        gross_value_code: Investment total value code at end of reporting period as code (ex. J (1-15,000)). Substituted with the numerical values of the range.
        gross_value_code_max: Maximum value of the gross_value_code.
        gross_value_method: Investment valuation method code (ex. Q = Appraisal)
        transaction_during_reporting_period: Transaction of investment during reporting period (ex. Buy, Sold)
        transaction_date_raw: Date of the transaction, if any (D2)
        transaction_date: Date of the transaction, if any (D2)
        transaction_value_code: Transaction value amount, as form code (ex. J (1-15,000)). Substituted with the numerical values of the range.
        transaction_value_code_max: Maximum value of transaction_value_code.
        transaction_gain_code: Gain from investment transaction if any (ex. A (1-1000)). Substituted with the numerical values of the range.
        transaction_gain_code_max: Maximum value of transaction_gain_code.
        transaction_partner: Identity of the transaction partner
        has_inferred_values: If the investment name was inferred during extraction. This is common because transactions usually list the first purchase of a stock and leave the name value blank for subsequent purchases or sales.
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

non_investment_incomes:
        date_raw: Date of non-investment income (ex. 2011).
        source_type: Source and type of non-investment income for the judge (ex. Teaching a class at U. Miami).
        income_amount: Amount earned by judge, often a number, but sometimes with explanatory text (e.g. 'Income at firm: $xyz').
        redacted: Does the non-investment income row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

positions:
        non judiciary position: Position title (ex. Trustee).
        organization_name: Name of organization or entity (ex. Trust #1).
        redacted: Does the position row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

reimbursements:
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown
        source: Source of the reimbursement (ex. FSU Law School).
        date_raw: Dates as a text string for the date of reimbursements. This is often conference dates (ex. June 2-6, 2011). 
        location: Location of the reimbursement (ex. Harvard Law School, Cambridge, MA).
        purpose: Purpose of the reimbursement (ex. Baseball announcer).
        items_paid_or_provided: Items reimbursed (ex. Room, Airfare).
        redacted: Does the reimbursement contain redaction(s)?

spouse_incomes:
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown
        source_type: Source and type of income of judicial spouse (ex. Salary from Bank job).
        redacted: Does the spousal-income row contain redaction(s)?
        date_raw: Date of spousal income (ex. 2011).


=============
Person Fields
=============


fjc_id: The ID of a judge as assigned by the Federal Judicial Center.
Date of Birth: The date of birth for the person
name_last: The last name of this person
political_affiliations: Political affiliations for the judge. Variable length so combined by a comma
Death Country: The country where the person died.
Birth City: The city where the person was born.
name_suffix: Any suffixes that this person's name may have
aba_ratings: American Bar Association Ratings. Variable length so combined by a comma
name_first: The first name of this person.
Death State: The state where the person died.
sources: Sources about the person. Variable length so combined with a newline
Birth Country: The country where the person was born.
cl_id: A unique identifier for judge, also indicating source of data.
gender: The person's gender
name_middle: The middle name or names of this person
ftm_eid: The ID of a judge as assigned by the Follow the Money database.
Death City: The city where the person died.
positions: Positions of person. Variable length so combined with a newline
ftm_total_received: The amount of money received by this person and logged by Follow the Money.
Date of Death: The date of death for the person
religion: The religion of a person
educations: Educations of the person. Variable length so combined by a comma
bachelor school: Name of the school from which they got their Bachelor's degree, and/or Bachelor's of Law degree. Variable length so combined by a comma
juris doctor school: name of the school from which they got their jusris doctor degree. their Bachelor's degree, and/or Bachelor's of Law degree. Variable length so combined by a comma
race: Race of the person. Variable length so combined by a comma
Birth State: The state where the person was born.


Owner
Ali Rastegar
Hi
Ali Rastegar
Easy OpenAPI specs and Swagger UI for your Flask API

Flasgger Easy Swagger UI for your Flask API Flasgger is a Flask extension to extract OpenAPI-Specification from all Flask views registered in your API

Flasgger 3.1k Jan 05, 2023
A set of Python libraries that assist in calling the SoftLayer API.

SoftLayer API Python Client This library provides a simple Python client to interact with SoftLayer's XML-RPC API. A command-line interface is also in

SoftLayer 155 Sep 20, 2022
Material for the ros2 crash course

Material for the ros2 crash course

Emmanuel Dean 1 Jan 22, 2022
Resource hub for Obsidian resources.

Obsidian Community Vault Welcome! This is an experimental vault that is maintained by the Obsidian community. For best results we recommend downloadin

Obsidian Community 320 Jan 02, 2023
freeCodeCamp Scientific Computing with Python Project for Certification.

Polygon_Area_Calculator freeCodeCamp Python Project freeCodeCamp Scientific Computing with Python Project for Certification. In this project you will

Rajdeep Mondal 1 Dec 23, 2021
Python Tool to Easily Generate Multiple Documents

Python Tool to Easily Generate Multiple Documents Running the script doesn't require internet Max Generation is set to 10k to avoid lagging/crashing R

2 Apr 27, 2022
PowerApps-docstring is a console based, pipeline ready application that automatically generates user and technical documentation for Power Apps.

powerapps-docstring PowerApps-docstring is a console based, pipeline ready application that automatically generates user and technical documentation f

Sebastian Muthwill 30 Nov 23, 2022
A next-generation curated knowledge sharing platform for data scientists and other technical professions.

Knowledge Repo The Knowledge Repo project is focused on facilitating the sharing of knowledge between data scientists and other technical roles using

Airbnb 5.2k Dec 27, 2022
Code for our SIGIR 2022 accepted paper : P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-based Learning and Pre-finetuning

P3 Ranker Implementation for our SIGIR2022 accepted paper: P3 Ranker: Mitigating the Gaps between Pre-training and Ranking Fine-tuning with Prompt-bas

14 Jan 04, 2023
A curated list of python programming language blogs

Python Blogs A curated list of python programming language blogs Contribute Companies/Organization # A B C D E F G H I J K L M N O P Q R S T U V W X Y

Rizky D. Onto 48 Nov 15, 2022
Toolchain for project structure and documents optimisation

ritocco Toolchain for project structure and documents optimisation

Harvey Wu 1 Jan 12, 2022
Generating a report CSV and send it to an email - Python / Django Rest Framework

Generating a report in CSV format and sending it to a email How to start project. Create a folder in your machine Create a virtual environment python3

alexandre Lopes 1 Jan 17, 2022
Crystal Smp plugin for show scoreboards

MCDR-CrystalScoreboards Crystal plugin for show scoreboards | Only 1.12 Usage !!s : Plugin help message !!s hide : Hide scoreboard !!s show : Show Sco

CristhianCd 3 Oct 12, 2021
An MkDocs plugin to export content pages as PDF files

MkDocs PDF Export Plugin An MkDocs plugin to export content pages as PDF files The pdf-export plugin will export all markdown pages in your MkDocs rep

Terry Zhao 266 Dec 13, 2022
An open source utility for creating publication quality LaTex figures generated from OpenFOAM data files.

foamTEX An open source utility for creating publication quality LaTex figures generated from OpenFOAM data files. Explore the docs » Report Bug · Requ

1 Dec 19, 2021
🍭 epub generator for lightnovel.us 轻之国度 epub 生成器

lightnovel_epub 本工具用于基于轻之国度网页生成epub小说。 注意:本工具仅作学习交流使用,作者不对内容和使用情况付任何责任! 原理 直接抓取 HTML,然后将其中的图片下载至本地,随后打包成 EPUB。

gyro永不抽风 188 Dec 30, 2022
Pydantic model generator for easy conversion of JSON, OpenAPI, JSON Schema, and YAML data sources.

datamodel-code-generator This code generator creates pydantic model from an openapi file and others. Help See documentation for more details. Supporte

Koudai Aono 1.3k Dec 29, 2022
Fastest Git client for Emacs.

EAF Git Client EAF Git is git client application for the Emacs Application Framework. The advantages of EAF Git are: Large log browse: support 1 milli

Emacs Application Framework 31 Dec 02, 2022
A Python Package To Generate Strong Passwords For You in Your Projects.

shPassGenerator Version 1.0.6 Ready To Use Developed by Shervin Badanara (shervinbdndev) on Github Language and technologies used in This Project Work

Shervin 11 Dec 19, 2022
A plugin to introduce a generic API for Decompiler support in GEF

decomp2gef A plugin to introduce a generic API for Decompiler support in GEF. Like GEF, the plugin is battery-included and requires no external depend

Zion 379 Jan 08, 2023