[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Related tags

Deep LearningCTSDG
Overview

CTSDG

Paper | Pre-trained Models | BibTex

Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo, Hongyu Yang, Di Huang
In ICCV'2021

Introduction

Generator. Image inpainting is cast into two subtasks, i.e., structure-constrained texture synthesis (left, blue) and texture-guided structure reconstruction (right, red), and the two parallel-coupled streams borrow encoded deep features from each other. The Bi-GFF module and CFA module are stacked at the end of the generator to further refine the results.

Discriminator. The texture branch estimates the generated texture, while the structure branch guides structure reconstruction.

Prerequisites

  • Python >= 3.6
  • PyTorch >= 1.0
  • NVIDIA GPU + CUDA cuDNN

Getting Started

Installation

  • Clone this repo:
git clone https://github.com/Xiefan-Guo/CTSDG.git
cd CTSDG
pip install -r requirements.txt

Datasets

Image Dataset. We evaluate the proposed method on the CelebA, Paris StreetView, and Places2 datasets, which are widely adopted in the literature.

Mask Dataset. Irregular masks are obtained from Irregular Masks and classified based on their hole sizes relative to the entire image with an increment of 10%.

Training

Analogous to PConv by Liu et.al, initial training followed by finetuning are performed.

python train.py \
  --image_root [path to image directory] \
  --mask_root [path mask directory]

python train.py \
  --image_root [path to image directory] \
  --mask_root [path to mask directory] \
  --pre_trained [path to checkpoints] \
  --finetune True

Distributed training support. You can train model in distributed settings.

python -m torch.distributed.launch --nproc_per_node=N_GPU train.py

Testing

To test the model, you run the following code.

python test.py \
  --pre_trained [path to checkpoints] \
  --image_root [path to image directory] \
  --mask_root [path to mask directory] \
  --result_root [path to output directory] \
  --number_eval [number of images to test]

Citation

If any part of our paper and repository is helpful to your work, please generously cite with:

@InProceedings{Guo_2021_ICCV,
    author    = {Guo, Xiefan and Yang, Hongyu and Huang, Di},
    title     = {Image Inpainting via Conditional Texture and Structure Dual Generation},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {14134-14143}
}
Owner
Xiefan Guo
Xiefan Guo
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis

HiFi-GAN: Generative Adversarial Networks for Efficient and High Fidelity Speech Synthesis Jungil Kong, Jaehyeon Kim, Jaekyoung Bae In our paper, we p

Rishikesh (ऋषिकेश) 31 Dec 08, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Official codes for the paper "Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech"

ResDAVEnet-VQ Official PyTorch implementation of Learning Hierarchical Discrete Linguistic Units from Visually-Grounded Speech What is in this repo? M

Wei-Ning Hsu 21 Aug 23, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Specificity-preserving RGB-D Saliency Detection

Specificity-preserving RGB-D Saliency Detection Authors: Tao Zhou, Huazhu Fu, Geng Chen, Yi Zhou, Deng-Ping Fan, and Ling Shao. 1. Preface This reposi

Tao Zhou 35 Jan 08, 2023
This repository is the offical Pytorch implementation of ContextPose: Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021).

Context Modeling in 3D Human Pose Estimation: A Unified Perspective (CVPR 2021) Introduction This repository is the offical Pytorch implementation of

37 Nov 21, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up/down.

HandTrackingBrightnessControl A hand tracking demo made with mediapipe where you can control lights with pinching your fingers and moving your hand up

Teemu Laurila 19 Feb 12, 2022
🥈78th place in Riiid Solution🥈

Riiid Answer Correctness Prediction Introduction This repository is the code that placed 78th in Riiid Answer Correctness Prediction competition. Requ

ds wook 14 Apr 26, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022