Compact Bidirectional Transformer for Image Captioning

Related tags

Deep LearningCBTrans
Overview

Compact Bidirectional Transformer for Image Captioning

Requirements

  • Python 3.8
  • Pytorch 1.6
  • lmdb
  • h5py
  • tensorboardX

Prepare Data

  1. Please use git clone --recurse-submodules to clone this repository and remember to follow initialization steps in coco-caption/README.md.
  2. Download the preprocessd dataset from this link and extract it to data/.
  3. Please download the converted VinVL feature from this link and place them under data/mscoco_VinVL/. You can also optionally follow this instruction to prepare the fixed or adaptive bottom-up features extracted by Anderson and place them under data/mscoco/ or data/mscoco_adaptive/.
  4. Download part checkpoints from here and extract them to save/.

Offline Evaluation

To reproduce the results of single CBTIC model on Karpathy test split, just run

python  eval.py  --model  save/nsc-transformer-cb-VinVL-feat/model-best.pth   --infos_path  save/nsc-transformer-cb-VinVL-feat/infos_nsc-transformer-cb-VinVL-feat-best.pkl      --beam_size   2   --id  nsc-transformer-cb-VinVL-feat   --split test

To reproduce the results of ensemble of CBTIC models on Karpathy test split, just run

python eval_ensemble.py   --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --beam_size  2   --split  test

Online Evaluation

Please first run

python eval_ensemble.py   --split  test  --language_eval 0  --ids   nsc-transformer-cb-VinVL-feat  nsc-transformer-cb-VinVL-feat-seed1   nsc-transformer-cb-VinVL-feat-seed2  nsc-transformer-cb-VinVL-feat-seed3 --weights  1 1 1 1  --input_json  data/cocotest.json  --input_fc_dir data/mscoco_VinVL/cocobu_test2014/cocobu_fc --input_att_dir  data/mscoco_VinVL/cocobu_test2014/cocobu_att   --input_label_h5    data/cocotalk_bw_label.h5    --language_eval 0        --batch_size  128   --beam_size   2   --id   captions_test2014_cbtic_results 

and then follow the instruction to upload results.

Training

  1. In the first training stage, such as using VinVL feature, run
python  train.py   --noamopt --noamopt_warmup 20000   --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 5e-4 --num_layers 6 --input_encoding_size 512 --rnn_size 2048 --learning_rate_decay_start 0  --scheduled_sampling_start 0  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --max_epochs 15     --checkpoint_path   save/transformer-cb-VinVL-feat   --id   transformer-cb-VinVL-feat   --caption_model  cbt     --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box    
  1. Then in the second training stage, you need two GPUs with 12G memory each, please copy the above pretrained model first
cd save
./copy_model.sh  transformer-cb-VinVL-feat    nsc-transformer-cb-VinVL-feat
cd ..

and then run

python  train.py    --seq_per_img 5 --batch_size 10 --beam_size 1 --learning_rate 1e-5 --num_layers 6 --input_encoding_size 512 --rnn_size 2048  --save_checkpoint_every 3000 --language_eval 1 --val_images_use 5000 --self_critical_after 14  --max_epochs    30  --start_from   save/nsc-transformer-cb-VinVL-feat     --checkpoint_path   save/nsc-transformer-cb-VinVL-feat   --id  nsc-transformer-cb-VinVL-feat   --caption_model  cbt    --input_fc_dir   data/mscoco_VinVL/cocobu_fc   --input_att_dir   data/mscoco_VinVL/cocobu_att    --input_box_dir    data/mscoco_VinVL/cocobu_box 

Note

  1. Even if fixing all random seed, we find that the results of the two runs are still slightly different when using DataParallel on two GPUs. However, the results can be reproduced exactly when using one GPU.
  2. If you are interested in the ablation studies, you can use the git reflog to list all commits and use git reset --hard commit_id to change to corresponding commit.

Citation

@misc{zhou2022compact,
      title={Compact Bidirectional Transformer for Image Captioning}, 
      author={Yuanen Zhou and Zhenzhen Hu and Daqing Liu and Huixia Ben and Meng Wang},
      year={2022},
      eprint={2201.01984},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

This repository is built upon self-critical.pytorch. Thanks for the released code.

Owner
YE Zhou
YE Zhou
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
A Blender python script for getting asset browser custom preview images for objects and collections.

asset_snapshot A Blender python script for getting asset browser custom preview images for objects and collections. Installation: Click the code butto

Johnny Matthews 44 Nov 29, 2022
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Official implementation of "Refiner: Refining Self-attention for Vision Transformers".

RefinerViT This repo is the official implementation of "Refiner: Refining Self-attention for Vision Transformers". The repo is build on top of timm an

101 Dec 29, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022