Adversarial Reweighting for Partial Domain Adaptation

Overview

Adversarial Reweighting for Partial Domain Adaptation

Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Partial Domain Adaptation, Conference on Neural Information Processing Systems (NeurIPS), 2021".

Prerequisites:

python==3.6.13
pytorch ==1.5.1
torchvision ==0.6.1
numpy==1.19.2
cvxpy ==1.1.14
tqdm ==4.1.2
Pillow == 8.3.1

Datasets:

Download the datasets of
VisDA-2017
DomainNet
Office-Home
Office
ImageNet
Caltech-256
and put them into the folder "./data/" and modify the path of images in each '.txt' under the folder './data/'. Note the full list of ImageNet (imagenet.txt) is too big. Please download it here and put it into './data/imagenet_caltech/'.

Domain ID:

VisDA-2017: train (synthetic), validation (real) ==> 0,1
DomainNet: clipart, painting, real, sketch ==> 0,1,2,3
Office-Home: Art, Clipart, Product, RealWorld ==> 0,1,2,3
Office: amazon, dslr, webcam ==> 0,1,2
ImageNet-Caltech: imagenet, caltech ==> 0,1

Training

VisDA-2017:

python train.py --dset visda-2017 --s 0 --t 1

DomainNet:

python train.py --dset domainnet --s 0 --t 1

Office-Home:

#for AR
python train.py --dset office_home --s 0 --t 1
#for AR+LS
python train.py --dset office_home --s 0 --t 1 --label_smooth

Office:

python train.py --dset office --s 0 --t 1

ImageNet-Caltech:

python train.py --dset imagenet_caltech --s 0 --t 1

Citation:

@inproceedings{
gu2021adversarial,
title={Adversarial Reweighting for Partial Domain Adaptation},
author={Xiang Gu and Xi Yu and Yan Yang and Jian Sun and Zongben Xu},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=f5liPryFRoA}
}

Reference code:

https://github.com/thuml/CDAN
https://github.com/tim-learn/BA3US
https://github.com/XJTU-XGU/RSDA

Contact:

If you have any problem, feel free to contect [email protected].

A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
A benchmark for the task of translation suggestion

WeTS: A Benchmark for Translation Suggestion Translation Suggestion (TS), which provides alternatives for specific words or phrases given the entire d

zhyang 55 Dec 24, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking

One-Shot Neural Ensemble Architecture Search by Diversity-Guided Search Space Shrinking This is an official implementation for NEAS presented in CVPR

Multimedia Research 19 Sep 08, 2022
Probabilistic Cross-Modal Embedding (PCME) CVPR 2021

Probabilistic Cross-Modal Embedding (PCME) CVPR 2021 Official Pytorch implementation of PCME | Paper Sanghyuk Chun1 Seong Joon Oh1 Rafael Sampaio de R

NAVER AI 87 Dec 21, 2022
Artificial Neural network regression model to predict the energy output in a combined cycle power plant.

Energy_Output_Predictor Artificial Neural network regression model to predict the energy output in a combined cycle power plant. Abstract Energy outpu

1 Feb 11, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Adaptive FNO transformer - official Pytorch implementation

Adaptive Fourier Neural Operators: Efficient Token Mixers for Transformers This repository contains PyTorch implementation of the Adaptive Fourier Neu

NVIDIA Research Projects 77 Dec 29, 2022
Tandem Mass Spectrum Prediction with Graph Transformers

MassFormer This is the original implementation of MassFormer, a graph transformer for small molecule MS/MS prediction. Check out the preprint on arxiv

Röst Lab 13 Oct 27, 2022
ColossalAI-Benchmark - Performance benchmarking with ColossalAI

Benchmark for Tuning Accuracy and Efficiency Overview The benchmark includes our

HPC-AI Tech 31 Oct 07, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
[NeurIPS 2021] Code for Unsupervised Learning of Compositional Energy Concepts

Unsupervised Learning of Compositional Energy Concepts This is the pytorch code for the paper Unsupervised Learning of Compositional Energy Concepts.

45 Nov 30, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022