Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

Overview

TradingGym

Build Status

TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated the framework form. Not only traning env but also has backtesting and in the future will implement realtime trading env with Interactivate Broker API and so on.

This training env originally design for tickdata, but also support for ohlc data format. WIP.

Installation

git clone https://github.com/Yvictor/TradingGym.git
cd TradingGym
python setup.py install

Getting Started

import random
import numpy as np
import pandas as pd
import trading_env

df = pd.read_hdf('dataset/SGXTW.h5', 'STW')

env = trading_env.make(env_id='training_v1', obs_data_len=256, step_len=128,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'Volume', 
                                      'Ask_price','Bid_price', 
                                      'Ask_deal_vol','Bid_deal_vol',
                                      'Bid/Ask_deal', 'Updown'])

env.reset()
env.render()

state, reward, done, info = env.step(random.randrange(3))

### randow choice action and show the transaction detail
for i in range(500):
    print(i)
    state, reward, done, info = env.step(random.randrange(3))
    print(state, reward)
    env.render()
    if done:
        break
env.transaction_details
  • obs_data_len: observation data length
  • step_len: when call step rolling windows will + step_len
  • df exmaple
index datetime bid ask price volume serial_number dealin
0 2010-05-25 08:45:00 7188.0 7188.0 7188.0 527.0 0.0 0.0
1 2010-05-25 08:45:00 7188.0 7189.0 7189.0 1.0 1.0 1.0
2 2010-05-25 08:45:00 7188.0 7189.0 7188.0 1.0 2.0 -1.0
3 2010-05-25 08:45:00 7188.0 7189.0 7188.0 4.0 3.0 -1.0
4 2010-05-25 08:45:00 7188.0 7189.0 7188.0 2.0 4.0 -1.0
  • df: dataframe that contain data for trading

serial_number -> serial num of deal at each day recalculating

  • fee: when each deal will pay the fee, set with your product.
  • max_position: the max market position for you trading share.
  • deal_col_name: the column name for cucalate reward used.
  • feature_names: list contain the feature columns to use in trading status.

gif

Training

simple dqn

  • WIP

policy gradient

  • WIP

actor-critic

  • WIP

A3C with RNN

  • WIP

Backtesting

  • loading env just like training
env = trading_env.make(env_id='backtest_v1', obs_data_len=1024, step_len=512,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                        feature_names=['Price', 'Volume', 
                                       'Ask_price','Bid_price', 
                                       'Ask_deal_vol','Bid_deal_vol',
                                       'Bid/Ask_deal', 'Updown'])
  • load your own agent
class YourAgent:
    def __init__(self):
        # build your network and so on
        pass
    def choice_action(self, state):
        ## your rule base conditon or your max Qvalue action or Policy Gradient action
         # action=0 -> do nothing
         # action=1 -> buy 1 share
         # action=2 -> sell 1 share
        ## in this testing case we just build a simple random policy 
        return np.random.randint(3)
  • start to backtest
agent = YourAgent()

transactions = []
while not env.backtest_done:
    state = env.backtest()
    done = False
    while not done:
        state, reward, done, info = env.step(agent.choice_action(state))
        #print(state, reward)
        #env.render()
        if done:
            transactions.append(info)
            break
transaction = pd.concate(transactions)
transaction
step datetime transact transact_type price share price_mean position reward_fluc reward reward_sum color rotation
2 1537 2013-04-09 10:58:45 Buy new 277.1 1.0 277.100000 1.0 0.000000e+00 0.000000e+00 0.000000 1 1
5 3073 2013-04-09 11:47:26 Sell cover 276.8 -1.0 277.100000 0.0 -4.000000e-01 -4.000000e-01 -0.400000 2 2
10 5633 2013-04-09 13:23:40 Sell new 276.9 -1.0 276.900000 -1.0 0.000000e+00 0.000000e+00 -0.400000 2 1
11 6145 2013-04-09 13:30:36 Sell new 276.7 -1.0 276.800000 -2.0 1.000000e-01 0.000000e+00 -0.400000 2 1
... ... ... ... ... ... ... ... ... ... ... ... ... ...
211 108545 2013-04-19 13:18:32 Sell new 286.7 -1.0 286.525000 -2.0 -4.500000e-01 0.000000e+00 30.650000 2 1
216 111105 2013-04-19 16:02:01 Sell new 289.2 -1.0 287.416667 -3.0 -5.550000e+00 0.000000e+00 30.650000 2 1
217 111617 2013-04-19 17:54:29 Sell new 289.2 -1.0 287.862500 -4.0 -5.650000e+00 0.000000e+00 30.650000 2 1
218 112129 2013-04-19 21:36:21 Sell new 288.0 -1.0 287.890000 -5.0 -9.500000e-01 0.000000e+00 30.650000 2 1
219 112129 2013-04-19 21:36:21 Buy cover 288.0 5.0 287.890000 0.0 0.000000e+00 -1.050000e+00 29.600000 1 2

128 rows × 13 columns

exmaple of rule base usage

  • ma crossover and crossunder
env = trading_env.make(env_id='backtest_v1', obs_data_len=10, step_len=1,
                       df=df, fee=0.1, max_position=5, deal_col_name='Price', 
                       feature_names=['Price', 'MA'])
class MaAgent:
    def __init__(self):
        pass
        
    def choice_action(self, state):
        if state[-1][0] > state[-1][1] and state[-2][0] <= state[-2][1]:
            return 1
        elif state[-1][0] < state[-1][1] and state[-2][0] >= state[-2][1]:
            return 2
        else:
            return 0
# then same as above
Owner
Yvictor
Yvictor
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in clustering (CVPR2021)

PiCIE: Unsupervised Semantic Segmentation using Invariance and Equivariance in Clustering Jang Hyun Cho1, Utkarsh Mall2, Kavita Bala2, Bharath Harihar

Jang Hyun Cho 164 Dec 30, 2022
《Rethinking Sptil Dimensions of Vision Trnsformers》(2021)

Rethinking Spatial Dimensions of Vision Transformers Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk Chun, Junsuk Choe, Seong Joon Oh | Paper NAVER

NAVER AI 224 Dec 27, 2022
🔅 Shapash makes Machine Learning models transparent and understandable by everyone

🎉 What's new ? Version New Feature Description Tutorial 1.6.x Explainability Quality Metrics To help increase confidence in explainability methods, y

MAIF 2.1k Dec 27, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
CurriculumNet: Weakly Supervised Learning from Large-Scale Web Images

CurriculumNet Introduction This repo contains related code and models from the ECCV 2018 CurriculumNet paper. CurriculumNet is a new training strategy

156 Jul 04, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition.

AnimalAI 3 AAI supports interdisciplinary research to help better understand human, animal, and artificial cognition. It aims to support AI research t

Matthew Crosby 58 Dec 12, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning This repository is the official implementation of CARE.

ChongjianGE 89 Dec 02, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Stacked Recurrent Hourglass Network for Stereo Matching

SRH-Net: Stacked Recurrent Hourglass Introduction This repository is supplementary material of our RA-L submission, which helps reviewers to understan

28 Jan 03, 2023
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022