Additional environments compatible with OpenAI gym

Overview

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning

A codebase for training reinforcement learning policies for quadrotor swarms. Includes:

Paper: https://arxiv.org/abs/2109.07735

Website: https://sites.google.com/view/swarm-rl

Installation

Initialize a Python environment, i.e. with conda (Python versions 3.6-3.8 are supported):

conda create -n swarm-rl python=3.8
conda activate swarm-rl

Clone and install this repo as an editable Pip package:

git clone https://github.com/alex-petrenko/quad-swarm-rl
cd quad-swarm-rl
pip install -e .

This should pull and install all the necessary dependencies, including Sample Factory and PyTorch.

Running experiments

Train

This will run the baseline experiment. Change the number of workers appropriately to match the number of logical CPU cores on your machine, but it is advised that the total number of simulated environments is close to that in the original command:

python -m swarm_rl.train --env=quadrotor_multi --train_for_env_steps=1000000000 --algo=APPO \
--use_rnn=False \
--num_workers=36 --num_envs_per_worker=4 \
--learning_rate=0.0001 --ppo_clip_value=5.0 \
--recurrence=1 --nonlinearity=tanh --actor_critic_share_weights=False \
--policy_initialization=xavier_uniform --adaptive_stddev=False --with_vtrace=False \
--max_policy_lag=100000000 --hidden_size=256 --gae_lambda=1.00 --max_grad_norm=5.0 \
--exploration_loss_coeff=0.0 --rollout=128 --batch_size=1024 --quads_use_numba=True \
--quads_mode=mix --quads_episode_duration=15.0 --quads_formation_size=0.0 \
--encoder_custom=quad_multi_encoder --with_pbt=False --quads_collision_reward=5.0 \
--quads_neighbor_hidden_size=256 --neighbor_obs_type=pos_vel --quads_settle_reward=0.0 \
--quads_collision_hitbox_radius=2.0 --quads_collision_falloff_radius=4.0 --quads_local_obs=6 \
--quads_local_metric=dist --quads_local_coeff=1.0 --quads_num_agents=8 --quads_collision_reward=5.0 \
--quads_collision_smooth_max_penalty=10.0 --quads_neighbor_encoder_type=attention \
--replay_buffer_sample_prob=0.75 --anneal_collision_steps=300000000 --experiment=swarm_rl 

Or, even better, you can use the runner scripts in swarm_rl/runs/. Runner scripts (a Sample Factory feature) are Python files that contain experiment parameters, and support features such as evaluation on multiple seeds and gridsearches.

To execute a runner script run the following command:

python -m sample_factory.runner.run --run=swarm_rl.runs.quad_multi_mix_baseline_attn --runner=processes --max_parallel=4 --pause_between=1 --experiments_per_gpu=1 --num_gpus=4

This command will start training four different seeds in parallel on a 4-GPU server. Adjust the parameters accordingly to match your hardware setup.

To monitor the experiments, go to the experiment folder, and run the following command:

tensorboard --logdir=./

Test

To test the trained model, run the following command:

python -m swarm_rl.enjoy --algo=APPO --env=quadrotor_multi --replay_buffer_sample_prob=0 --continuous_actions_sample=False --quads_use_numba=False --train_dir=PATH_TO_PROJECT/swarm_rl/train_dir --experiments_root=EXPERIMENT_ROOT --experiment=EXPERIMENT_NAME

Unit Tests

To run unit tests:

./run_tests.sh
Owner
Zhehui Huang
Zhehui Huang
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
Generate pixel-style avatars with python.

face2pixel Generate pixel-style avatars with python. Run: Clone the project: git clone https://github.com/theodorecooper/face2pixel install requiremen

Theodore Cooper 2 May 11, 2022
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
The codes and models in 'Gaze Estimation using Transformer'.

GazeTR We provide the code of GazeTR-Hybrid in "Gaze Estimation using Transformer". We recommend you to use data processing codes provided in GazeHub.

65 Dec 27, 2022
ANEA: Automated (Named) Entity Annotation for German Domain-Specific Texts

ANEA The goal of Automatic (Named) Entity Annotation is to create a small annotated dataset for NER extracted from German domain-specific texts. Insta

Anastasia Zhukova 2 Oct 07, 2022
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
An official implementation of "Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation" (ICCV 2021) in PyTorch.

Exploiting a Joint Embedding Space for Generalized Zero-Shot Semantic Segmentation This is an official implementation of the paper "Exploiting a Joint

CV Lab @ Yonsei University 35 Oct 26, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
A Human-in-the-Loop workflow for creating HD images from text

A Human-in-the-Loop? workflow for creating HD images from text DALL·E Flow is an interactive workflow for generating high-definition images from text

Jina AI 2.5k Jan 02, 2023
Fine-Tune EleutherAI GPT-Neo to Generate Netflix Movie Descriptions in Only 47 Lines of Code Using Hugginface And DeepSpeed

GPT-Neo-2.7B Fine-Tuning Example Using HuggingFace & DeepSpeed Installation cd venv/bin ./pip install -r ../../requirements.txt ./pip install deepspe

Nikita 180 Jan 05, 2023
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction

TSDF++: A Multi-Object Formulation for Dynamic Object Tracking and Reconstruction TSDF++ is a novel multi-object TSDF formulation that can encode mult

ETHZ ASL 130 Dec 29, 2022