Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

Overview

For SwapNet

Create a list.txt file containing all the images to process. This can be done with the GNU find command:

find path/to/input/folder -name '*.jpg' -o -name '*.png' > list.txt

Then run this to get the clothing segmentations

python evaluate_parsing_JPPNet-s2.py -d path/to/texture -l path/to/list.txt -o path/to/clothing

Joint Body Parsing & Pose Estimation Network (JPPNet)

Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin, "Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark", T-PAMI 2018.

Introduction

JPPNet is a state-of-art deep learning methord for human parsing and pose estimation built on top of Tensorflow.

This novel joint human parsing and pose estimation network incorporates the multiscale feature connections and iterative location refinement in an end-to-end framework to investigate efficient context modeling and then enable parsing and pose tasks that are mutually beneficial to each other. This unified framework achieves state-of-the-art performance for both human parsing and pose estimation tasks.

This distribution provides a publicly available implementation for the key model ingredients reported in our latest paper which is accepted by T-PAMI 2018.

We simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. There is also a public implementation of this self-supervised structure-sensitive JPPNet (SS-JPPNet).

Look into People (LIP) Dataset

The SSL is trained and evaluated on our LIP dataset for human parsing. Please check it for more model details. The dataset is also available at google drive and baidu drive.

Pre-trained models

We have released our trained models of JPPNet on LIP dataset at google drive and baidu drive.

Inference

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Prepare the images and store in $HOME/datasets.
  3. Run evaluate_pose_JPPNet-s2.py for pose estimation and evaluate_parsing_JPPNet-s2.py for human parsing.
  4. The results are saved in $HOME/output

Training

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Download LIP dataset or prepare your own data and store in $HOME/datasets.
  3. For LIP dataset, we have provided images, parsing labels, lists and the left-right flipping labels (labels_rev) for data augmentation. You need to generate the heatmaps of pose labels. We have provided a script for reference.
  4. Run train_JPPNet-s2.py to train the JPPNet with two refinement stages.
  5. Use evaluate_pose_JPPNet-s2.py and evaluate_parsing_JPPNet-s2.py to generate the results or evaluate the trained models.
  6. Note that the LIPReader class is only suit for labels in LIP for the left-right flipping augmentation. If you want to train on other datasets with different labels, you may have to re-write an image reader class.

Citation

If you use this code for your research, please cite our papers.

@article{liang2018look,
  title={Look into Person: Joint Body Parsing \& Pose Estimation Network and a New Benchmark},
  author={Liang, Xiaodan and Gong, Ke and Shen, Xiaohui and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2018},
  publisher={IEEE}
}

@InProceedings{Gong_2017_CVPR,
  author = {Gong, Ke and Liang, Xiaodan and Zhang, Dongyu and Shen, Xiaohui and Lin, Liang},
  title = {Look Into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {July},
  year = {2017}
}
Owner
Andrew Jong
Master's student at Carnegie Mellon in Robotics and AI. Studies multi-agent UAVs for wildfire applications.
Andrew Jong
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Visualizer using audio and semantic analysis to explore BigGAN (Brock et al., 2018) latent space.

BigGAN Audio Visualizer Description This visualizer explores BigGAN (Brock et al., 2018) latent space by using pitch/tempo of an audio file to generat

Rush Kapoor 2 Nov 21, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Improving Factual Consistency of Abstractive Text Summarization

Improving Factual Consistency of Abstractive Text Summarization We provide the code for the papers: "Entity-level Factual Consistency of Abstractive T

61 Nov 27, 2022
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
Jupyter notebooks for using & learning Keras

deep-learning-with-keras-notebooks 這個github的repository主要是個人在學習Keras的一些記錄及練習。希望在學習過程中發現到一些好的資訊與範例也可以對想要學習使用 Keras來解決問題的同好,或是對深度學習有興趣的在學學生可以有一些方便理解與上手範例

ErhWen Kuo 2.1k Dec 27, 2022