Semi-Automated Data Processing

Overview

Semi-Automated Data Processing

Preparing data for model learning is one of the most important steps in any project—and traditionally, one of the most time consuming. Data Analysis plays a very important role in the entire Data Science Workflow. In fact, this takes most of the time of the Data science Workflow. There’s a nice quote (not sure who said it)According to Wikipedia, In statistics, exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, often with visual methods. A statistical model can be used or not, but primarily EDA is for seeing what the data can tell us beyond the formal modeling or hypothesis testing task. Exploratory data analysis was promoted by John Tukey to encourage statisticians to explore the data, and possibly formulate hypotheses that could lead to new data collection and experiments.**“In Data Science, 80% of time spent prepare data, 20% of time spent complain about need for prepare data.”*

This projects handles the task with minimal user interaction by analyzing your data and identifying fixes, screening out fields that are problematic or not likely to be useful, deriving new attributes when appropriate, and improving performance through intelligent screening techniques. You can use the project in semi-interactive fashion, previewing the changes before they are made and accept or reject them as you want.

This project cover the 3 steps in any project workflow, comes before the model training:
1) Exploratory data analysis
2) Feature engineering
3) Feature selection


All these steps has to be carried out by the user by calling the several functions as follows:

1) identify_feature(data)=
This function identifies the categorical, continuous numerical and discrete numerical features in the datset. It also identifies datetime feature and extracts the relevant info from it.

Input:
data=Dataset

Output:
df=Dataset
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values

2) plot_nan_feature(data, continuous_features, discrete_features, categorical_features,dependent_var)=
It identifies the missing values in the dataset and visualize them their impact on dependent feature.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
categorical_features=List of features names associated containing categorical values
dependent_var= Dependent feature name in string format

Output:
df= Dataset
nan_features= List of feature names containing NaN values

3) visualize_imputation_impact(data,continuous_features, discrete_features, categorical_features,nan_features,dependent_var):
The function visualizes the impact of different NaN value impution on the distribution of values the feature.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
categorical_features=List of features names associated containing categorical values
nan_features= List of feature names containing NaN values
dependent_var= Dependent feature name in string format

Output:
None

4) nan_imputation(data,mean_feature,median_feature,mode_feature,random_feature,new_category):
The function imputes the NaN values in the feature as per the user input.

Input:
data=Dataset
mean_feature= List of feature names in which we have to carry out mean_imputation
median_feature=List of feature names in which we have to carry out median_imputation
mode_feature=List of feature names in which we have to carry out mode_imputation
random_feature=List of feature names in which we have to carry out random_imputation
new_category=List of feature names in which we we create a new category for the NaN values

Output:
None

5) cross_visualization(data,continuous_features,discrete_features, categorical_features,dt_features):
The function visualise the relationship between the different independent features.

Input:
df=Dataset
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values

Output:
continuous_features2=List of features names associated containing continuous numerical values, except the dependent feature

6) dependent_independent_visualization(data,continuous_features,discrete_features, categorical_features,dt_features,dependent_feature):
The function visualise the relationship between the different independent features.

Input:
data_cont_num_feature= List of features names associated containing continuous numerical values
data_dis_num_feature=List of features names associated containing discrete numerical values
data_cat_feature=List of features names associated containing categorical values
dt_feature=List of features names associated containing datetime values
dependent_var= Dependent feature name in string format

Output:
None

7) outlier_removal(data,continuous_features,discrete_features,dependent_var,dependent_var_type,action):
The function visualizes the outlliers using the boxplot and removes them.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
dependent_var= Dependent feature name in string format
dependent_var_type= Contain string tells if the problem is regression (than use 'Regression') or else
action= Give input as 'remove' to delete the rows associated with the outliers

Output:
df=Dataset

8) transformation_visualization(data,continuous_features,discrete_features,dependent_feature):
The function visualize the feature after performing various transormation techniques.

Input:
data=Dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
dependent_feature= Dependent feature name in string format

Output:
None

9) feature_transformation(train_data,continuous_features,discrete_features,transformation,dependent_feature):
The function performing the feature transormation technique as per the user input.

Input:
train_data=Training dataset
continuous_features= List of features names associated containing continuous numerical values
discrete_features=List of features names associated containing discrete numerical values
transformation=Type of transformation: none=No transformation, log=Log Transformation, sqrt= Square root Transformation, reciprocal= Reciprocal Transformation, exp= Exponential Transformation, boxcox=Boxcox Transformation
dependent_feature= Dependent feature name in string format

Output:
X_data=Training dataset

10) categorical_transformation(train_data,categorical_encoding):
This function transforms the categorical featres in the numerical ones using encoding techniques.

Input:
train_data=Training dataset
categorical_encoding={'one_hot_encoding':[],'frequency_encoding':[],'mean_encoding':[],'target_guided_ordinal_encoding':{}}

Output:
X_data=Training dataset

11a) feature_selection(Xtrain,ytrain, threshold, data_type, filter_type):
This function performs the feature selection based on the dependent and independent features in train dataset.

Input:
Xtrain=Training dataset
ytrain=dependent data in training dataset
threshold= Threshold for the correlation
{'in_num_out_num':{'linear':['pearson'],'non-linear':['spearman']},
'in_num_out_cat':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_num':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_cat':{'chi_square_test':True,'mutual_info':True},}
data_type= Data linear or non-linearly dependent on the output label
filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary

Output:
Xtrain= Training dataset
feature_df= Dataframe containig features with their pvalue

11b) feature_selection(Xtrain,ytrain,Xtest,ytest, threshold, data_type, filter_type):
This function performs the feature selection based on the dependent and independent features in train dataset.

Input:
Xtrain=Training dataset
ytrain=dependent data in training dataset
Xtest=Test dataset
ytest=dependent data in test dataset
threshold= Threshold for the correlation
{'in_num_out_num':{'linear':['pearson'],'non-linear':['spearman']},
'in_num_out_cat':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_num':{'linear':['ANOVA'],'non-linear':['kendall']},
'in_cat_out_cat':{'chi_square_test':True,'mutual_info':True},}
data_type= Data linear or non-linearly dependent on the output label
filter_type= If input data is numerical and output is numerical then --'in_num_out_num' as shown in the above dictionary

Output:
Xtrain= Training dataset
Xtest= Test dataset
feature_df= Dataframe containig features with their pvalue

12) convert_dtype(data,categorical_features):
This function converts the categorical fetaures containing the numeric values but presented as categorical into the int format.

Input:
data= Dataset
categorical_features=List of features names associated containing categorical values

Output:
df=Dataset

Note:
Use same paramters for both train and test dataset for better accuracy


We have implemented a bike sharing project to describe how the functions can be used for both the classification and regression problem statement.

Owner
Arun Singh Babal
Engineer | Data Science Enthusiasts | Machine Learning | Deep Learning | Advanced Computer Vision.
Arun Singh Babal
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
A data analysis using python and pandas to showcase trends in school performance.

A data analysis using python and pandas to showcase trends in school performance. A data analysis to showcase trends in school performance using Panda

Jimmy Faccioli 0 Sep 07, 2021
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
PandaPy has the speed of NumPy and the usability of Pandas 10x to 50x faster (by @firmai)

PandaPy "I came across PandaPy last week and have already used it in my current project. It is a fascinating Python library with a lot of potential to

Derek Snow 527 Jan 02, 2023
Generates a simple report about the current Covid-19 cases and deaths in Malaysia

Generates a simple report about the current Covid-19 cases and deaths in Malaysia. Results are delay one day, data provided by the Ministry of Health Malaysia Covid-19 public data.

Yap Khai Chuen 7 Dec 15, 2022
Titanic data analysis for python

Titanic-data-analysis This Repo is an analysis on Titanic_mod.csv This csv file contains some assumed data of the Titanic ship after sinking This full

Hardik Bhanot 1 Dec 26, 2021
Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Autopsy Module to analyze Registry Hives based on bookmarks provided by EricZimmerman for his tool RegistryExplorer

Mohammed Hassan 13 Mar 31, 2022
sportsdataverse python package

sportsdataverse-py See CHANGELOG.md for details. The goal of sportsdataverse-py is to provide the community with a python package for working with spo

Saiem Gilani 37 Dec 27, 2022
simple way to build the declarative and destributed data pipelines with python

unipipeline simple way to build the declarative and distributed data pipelines. Why you should use it Declarative strict config Scaffolding Fully type

aliaksandr-master 0 Jan 26, 2022
Working Time Statistics of working hours and working conditions by industry and company

Working Time Statistics of working hours and working conditions by industry and company

Feng Ruohang 88 Nov 04, 2022
Semi-Automated Data Processing

Perform semi automated exploratory data analysis, feature engineering and feature selection on provided dataset by visualizing every possibilities on each step and assisting the user to make a meanin

Arun Singh Babal 1 Jan 17, 2022
My solution to the book A Collection of Data Science Take-Home Challenges

DS-Take-Home Solution to the book "A Collection of Data Science Take-Home Challenges". Note: Please don't contact me for the dataset. This repository

Jifu Zhao 1.5k Jan 03, 2023
MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI

MidTerm Project for the Data Analysis FT Bootcamp, Adam Tycner and Florent ZAHOUI Hallo

Florent Zahoui 1 Feb 07, 2022
Approximate Nearest Neighbor Search for Sparse Data in Python!

Approximate Nearest Neighbor Search for Sparse Data in Python! This library is well suited to finding nearest neighbors in sparse, high dimensional spaces (like text documents).

Meta Research 906 Jan 01, 2023
Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences

Synthetic data need to preserve the statistical properties of real data in terms of their individual behavior and (inter-)dependences. Copula and functional Principle Component Analysis (fPCA) are st

32 Dec 20, 2022
Improving your data science workflows with

Make Better Defaults Author: Kjell Wooding [email protected] This is the git re

Kjell Wooding 18 Dec 23, 2022
Desafio 1 ~ Bantotal

Challenge 01 | Bantotal Please read the instructions for the challenge by selecting your preferred language below: Español Português License Copyright

Maratona Behind the Code 44 Sep 28, 2022
This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

This program analyzes a DNA sequence and outputs snippets of DNA that are likely to be protein-coding genes.

1 Dec 28, 2021
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
statDistros is a Python library for dealing with various statistical distributions

StatisticalDistributions statDistros statDistros is a Python library for dealing with various statistical distributions. Now it provides various stati

1 Oct 03, 2021