[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

Overview

template-pose

Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper (accepted to CVPR 2022)

Van Nguyen Nguyen, Yinlin Hu, Yang Xiao, Mathieu Salzmann and Vincent Lepetit

Check out our paper and webpage for details!

figures/method.png

If our project is helpful for your research, please consider citing :

@inproceedings{nguyen2022template,
    title={Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions},
    author={Nguyen, Van Nguyen and Hu, Yinlin and Xiao, Yang and Salzmann, Mathieu and Lepetit, Vincent},
    booktitle={Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
    year={2022}}

Table of Content

Methodology 🧑‍🎓

We introduce template-pose, which estimates 3D pose of new objects (can be very different from the training ones, i.e LINEMOD dataset) with only their 3D models. Our method requires neither a training phase on these objects nor images depicting them.

Two settings are considered in this work:

Dataset Predict ID object In-plane rotation
(Occlusion-)LINEMOD Yes No
T-LESS No Yes

Installation 👨‍🔧

We recommend creating a new Anaconda environment to use template-pose. Use the following commands to setup a new environment:

conda env create -f environment.yml
conda activate template

Optional: Installation of BlenderProc is required to render synthetic images. It can be ignored if you use our provided template. More details can be found in Datasets.

Datasets 😺 🔌

Before downloading the datasets, you may change this line to define the $ROOT folder (to store data and results).

There are two options:

  1. To download our pre-processed datasets (15GB) + SUN397 dataset (37GB)
./data/download_preprocessed_data.sh

Optional: You can download with following gdrive links and unzip them manually. We recommend keeping $DATA folder structure as detailed in ./data/README to keep pipeline simple:

  1. To download the original datasets and process them from scratch (process GT poses, render templates, compute nearest neighbors). All the main steps are detailed in ./data/README.
./data/download_and_process_from_scratch.sh

For any training with backbone ResNet50, we initialise with pretrained features of MOCOv2 which can be downloaded with the following command:

python -m lib.download_weight --model_name MoCov2

T-LESS 🔌

1. To launch a training on T-LESS:

python train_tless.py --config_path ./config_run/TLESS.json

2. To reproduce the results on T-LESS:

To download pretrained weights (by default, they are saved at $ROOT/pretrained/TLESS.pth):

python -m lib.download_weight --model_name TLESS

Optional: You can download manually with this link

To evaluate model with the pretrained weight:

python test_tless.py --config_path ./config_run/TLESS.json --checkpoint $ROOT/pretrained/TLESS.pth

LINEMOD and Occlusion-LINEMOD 😺

1. To launch a training on LINEMOD:

python train_linemod.py --config_path config_run/LM_$backbone_$split_name.json

For example, with “base" backbone and split #1:

python train_linemod.py --config_path config_run/LM_baseNetwork_split1.json

2. To reproduce the results on LINEMOD:

To download pretrained weights (by default, they are saved at $ROOT/pretrained):

python -m lib.download_weight --model_name LM_$backbone_$split_name

Optional: You can download manually with this link

To evaluate model with a checkpoint_path:

python test_linemod.py --config_path config_run/LM_$backbone_$split_name.json --checkpoint checkpoint_path

For example, with “base" backbone and split #1:

python -m lib.download_weight --model_name LM_baseNetwork_split1
python test_linemod.py --config_path config_run/LM_baseNetwork_split1.json --checkpoint $ROOT/pretrained/LM_baseNetwork_split1.pth

Acknowledgement

The code is adapted from PoseContrast, DTI-Clustering, CosyPose and BOP Toolkit. Many thanks to them!

The authors thank Martin Sundermeyer, Paul Wohlhart and Shreyas Hampali for their fast reply, feedback!

Contact

If you have any question, feel free to create an issue or contact the first author at [email protected]

Owner
Van Nguyen Nguyen
PhD student at Imagine-ENPC, France
Van Nguyen Nguyen
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Oriented Response Networks, in CVPR 2017

Oriented Response Networks [Home] [Project] [Paper] [Supp] [Poster] Torch Implementation The torch branch contains: the official torch implementation

ZhouYanzhao 217 Dec 12, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022
Classification of ecg datas for disease detection

ecg_classification Classification of ecg datas for disease detection

Atacan ÖZKAN 5 Sep 09, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
Python3 Implementation of (Subspace Constrained) Mean Shift Algorithm in Euclidean and Directional Product Spaces

(Subspace Constrained) Mean Shift Algorithms in Euclidean and/or Directional Product Spaces This repository contains Python3 code for the mean shift a

Yikun Zhang 0 Oct 19, 2021
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
A general-purpose programming language, focused on simplicity, safety and stability.

The Rivet programming language A general-purpose programming language, focused on simplicity, safety and stability. Rivet's goal is to be a very power

The Rivet programming language 17 Dec 29, 2022
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 09, 2023
RE3: State Entropy Maximization with Random Encoders for Efficient Exploration

State Entropy Maximization with Random Encoders for Efficient Exploration (RE3) (ICML 2021) Code for State Entropy Maximization with Random Encoders f

Younggyo Seo 47 Nov 29, 2022