TICC is a python solver for efficiently segmenting and clustering a multivariate time series

Related tags

Deep LearningTICC
Overview

TICC

TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regularization parameter lambda and smoothness parameter beta, the window size w and the number of clusters k. TICC breaks the T timestamps into segments where each segment belongs to one of the k clusters. The total number of segments is affected by the smoothness parameter beta. It does so by running an EM algorithm where TICC alternately assigns points to clusters using a dynamic programming algorithm and updates the cluster parameters by solving a Toeplitz Inverse Covariance Estimation problem.

For details about the method and implementation see the paper [1].

Download & Setup

Download the source code, by running in the terminal:

git clone https://github.com/davidhallac/TICC.git

Using TICC

The TICC-constructor takes the following parameters:

  • window_size: the size of the sliding window
  • number_of_clusters: the number of underlying clusters 'k'
  • lambda_parameter: sparsity of the Markov Random Field (MRF) for each of the clusters. The sparsity of the inverse covariance matrix of each cluster.
  • beta: The switching penalty used in the TICC algorithm. Same as the beta parameter described in the paper.
  • maxIters: the maximum iterations of the TICC algorithm before convergence. Default value is 100.
  • threshold: convergence threshold
  • write_out_file: Boolean. Flag indicating if the computed inverse covariances for each of the clusters should be saved.
  • prefix_string: Location of the folder to which you want to save the outputs.

The TICC.fit(input_file)-function runs the TICC algorithm on a specific dataset to learn the model parameters.

  • input_file: Location of the data matrix of size T-by-n.

An array of cluster assignments for each time point is returned in the form of a dictionary with keys being the cluster_id (from 0 to k-1) and the values being the cluster MRFs.

Example Usage

See example.py.

References

[1] D. Hallac, S. Vare, S. Boyd, and J. Leskovec Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 215--223

Owner
www.viaduct.ai
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
E-RAFT: Dense Optical Flow from Event Cameras

E-RAFT: Dense Optical Flow from Event Cameras This is the code for the paper E-RAFT: Dense Optical Flow from Event Cameras by Mathias Gehrig, Mario Mi

Robotics and Perception Group 71 Dec 12, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022