A JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

Related tags

Deep Learningbrave
Overview

BraVe

This is a JAX implementation of Broaden Your Views for Self-Supervised Video Learning, or BraVe for short.

The model provided in this package was implemented based on the internal model that was used to compute results for the accompanying paper. It achieves comparable results on the evaluation tasks when evaluated side-by-side. Not all details are guaranteed to be identical though, and some results may differ from those given in the paper. In particular, this implementation does not provide the option to train with optical flow.

We provide a selection of pretrained checkpoints in the table below, which can directly be evaluated against HMDB 51 with the evaluation tools this package. These are exactly the checkpoints that were used to provide the numbers in the accompanying paper, and were not trained with the exact trainer given in this package. For details on training a model with this package, please see the end of this readme.

In the table below, the different configurations are represented by using e.g. V/A for video (narrow view) to audio (broad view), or V/F for a narrow view containing video, and a broad view containing optical flow.

The backbone in each case is TSMResnet, with a given width multiplier (please see the accompanying paper for further details). For all of the given numbers below, the SVM regularization constant used is 0.0001. For HMDB 51, the average is given in brackets, followed by the top-1 percentages for each of the splits.

Views Architecture HMDB51 UCF-101 K600 Trained with this package Checkpoint
V/AF TSM (1X) (69.2%) 71.307%, 68.497%, 67.843% 92.9% 69.2% download
V/AF TSM (2X) (69.9%) 72.157%, 68.432%, 69.02% 93.2% 70.2% download
V/A TSM (1X) (69.4%) 70.131%, 68.889%, 69.085% 93.0% 70.6% download
V/VVV TSM (1X) (65.4%) 66.797%, 63.856%, 65.425% 92.6% 70.8% download

Reproducing results from the paper

This package provides everything needed to evaluate the above checkpoints against HMDB 51. It supports Python 3.7 and above.

To get started, we recommend using a clean virtualenv. You may then install the brave package directly from GitHub using,

pip install git+https://github.com/deepmind/brave.git

A pre-processed version of the HMDB 51 dataset can be downloaded using the following command. It requires that both ffmpeg and unrar are available. The following will download the dataset to /tmp/hmdb51/, but any other location would also work.

  python -m brave.download_hmdb --output_dir /tmp/hmdb51/

To evaluate a checkpoint downloaded from the above table, the following may be used. The dataset shards arguments should be set to match the paths used above.

  python -m brave.evaluate_video_embeddings \
    --checkpoint_path <path/to/downloaded/checkpoint>.npy \
    --train_dataset_shards '/tmp/hmdb51/split_1/train/*' \
    --test_dataset_shards '/tmp/hmdb51/split_1/test/*' \
    --svm_regularization 0.0001 \
    --batch_size 8

Note that any of the three splits can be evaluated by changing the dataset split paths. To run this efficiently using a GPU, it is also necessary to install the correct version of jaxlib. To install jaxlib with support for cuda 10.1 on linux, the following install should be sufficient, though other precompiled packages may be found through the JAX documentation.

  pip install https://storage.googleapis.com/jax-releases/cuda101/jaxlib-0.1.69+cuda101-cp39-none-manylinux2010_x86_64.whl

Depending on the available GPU memory available, the batch_size parameter may be tuned to obtain better performance, or to reduce the required GPU memory.

Training a network

This package may also be used to train a model from scratch using jaxline. In order to try this, first ensure the configuration is set appropriately by modifying brave/config.py. At minimum, it would also be necessary to choose an appropriate global batch size (by default, the setting of 512 is likely too large for any single-machine training setup). In addition, a value must be set for dataset_shards. This should contain the paths of the tfrecord files containing the serialized training data.

For details on checkpointing and distributing computation, see the jaxline documentation.

Similarly to above, it is necessary to install the correct jaxlib package to enable training on a GPU.

The training may now be launched using,

  python -m brave.experiment --config=brave/config.py

Training datasets

This model is able to read data stored in the format specified by DMVR. For an example of writing training data in the correct format see the code in dataset/fixtures.py, which is used to write the test fixtures used in the tests for this package.

Running the tests

After checking out this code locally, you may run the package tests using

  pip install -e .
  pytest brave

We recommend doing this from a clean virtual environment.

Citing this work

If you use this code (or any derived code), data or these models in your work, please cite the relevant accompanying paper.

@misc{recasens2021broaden,
      title={Broaden Your Views for Self-Supervised Video Learning},
      author={Adrià Recasens and Pauline Luc and Jean-Baptiste Alayrac and Luyu Wang and Ross Hemsley and Florian Strub and Corentin Tallec and Mateusz Malinowski and Viorica Patraucean and Florent Altché and Michal Valko and Jean-Bastien Grill and Aäron van den Oord and Andrew Zisserman},
      year={2021},
      eprint={2103.16559},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Disclaimer

This is not an official Google product

Owner
DeepMind
DeepMind
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
Code for the paper "Curriculum Dropout", ICCV 2017

Curriculum Dropout Dropout is a very effective way of regularizing neural networks. Stochastically "dropping out" units with a certain probability dis

Pietro Morerio 21 Jan 02, 2022
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging.

SweiNet SweiNet is an uncertainty-quantifying shear wave speed (SWS) estimator for ultrasound shear wave elasticity (SWE) imaging. SweiNet takes as in

Felix Jin 3 Mar 31, 2022
🥇 LG-AI-Challenge 2022 1위 솔루션 입니다.

LG-AI-Challenge-for-Plant-Classification Dacon에서 진행된 농업 환경 변화에 따른 작물 병해 진단 AI 경진대회 에 대한 코드입니다. (colab directory에 코드가 잘 정리 되어있습니다.) Requirements python

siwooyong 10 Jun 30, 2022
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022