Recreate CenternetV2 based on MMDET.

Overview

Introduction

This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection.

This project is also for the contest OpenMMLab Algorithm Ecological Challenge.

This is NOT the official implementation.

Quick peek at the result:

The paper: centernet2(CascadeRCNN-CenterNet w. prob.) mAP is 42.9.

This implementation: we implement centernet2(CascadeRCNN-CenterNet w. prob.) mAP is 43.2.

Note: We will continue to maintain the code with trick.

Note: We always reproduce the weights, which Verification and inference part.

Implementation

Code: we add detector in mmdet/models/detectors/centernetv2.py.

Code: we add config in configs/centernetv2/centernet2.py.

Code: we add centernet_head in mmdet/dense_heads/centernet_headv2.py.

Code: we add hm_binary_focal_loss in mmdet/losses/hm_binary_focal_loss.py.

Code: we modify mmdet/roi_heads/cascade_roi_head.py, add the super parameter add_agnostic_score to Control whether the first stage score.This hyperparameter does not affect the use of other configuration files

Code: we modify mmdet/bbox_head/bbox_head.py, add the super parameter add_agnostic_score to Control Whether to use softmax.This hyperparameter does not affect the use of other configuration files

Experiments

MMDetection: this project is based on version v2.15.0.

MMCV: version v1.3.5

Dataset: coco_train_2017(117k) as training dataset and coco_val_2017(5k) as testing dataset. All the results are reported on coco_val_2017.

Results reported in the paper:

AP AP50 AP75 APs APm APl
cascadeRCNN-CenterNet w.prob 42.862 59.519 47.028 24.064 47.043 56.197

Results by this implementation:

AP AP50 AP75 APs APm APl
cascadeRCNN-CenterNet w.prob 43.2 60.6 47.9 25.3 46.6 56.2

Log and model:

backbone Iter bbox AP Config Log Model GPUs
cascadeRCNN-CenterNet w.prob R-50-FPN 90000 43.2 config log baidu [jip5] single-v100(batch=20)

Usage

You can train and inference the model like any other models in MMDetection, see docs for details.

conda create -n centernetv2 python=3.7 -y

conda install pytorch cudatoolkit=10.1 torchvision -c pytorch

pip install mmcv-full

git clone https://github.com/yyz561/mmdetection

pip install -r requirements/build.txt

pip install -v -e . # or "python setup.py develop"

Acknowledgement

Probabilistic two-stage detection

MMDetection

MMCV

ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant ๐Ÿค“ Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
๐Ÿ”ฅ Cannlytics-powered artificial intelligence ๐Ÿค–

Cannlytics AI ๐Ÿ”ฅ Cannlytics-powered artificial intelligence ๐Ÿค– ๐Ÿ—๏ธ Installation ๐Ÿƒโ€โ™€๏ธ Quickstart ๐Ÿงฑ Development ๐Ÿฆพ Automation ๐Ÿ’ธ Support ๐Ÿ›๏ธ License ?

Cannlytics 3 Nov 11, 2022
Fastshap: A fast, approximate shap kernel

fastshap: A fast, approximate shap kernel fastshap was designed to be: Fast Calculating shap values can take an extremely long time. fastshap utilizes

Samuel Wilson 22 Sep 24, 2022
The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis.

deep-learning-LAM-avulsion-diagnosis The code succinctly shows how our ensemble learning based on deep learning CNN is used for LAM-avulsion-diagnosis

1 Jan 12, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
Attentional Focus Modulates Automatic Fingerโ€‘tapping Movements

"Attentional Focus Modulates Automatic Fingerโ€‘tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
1st ranked 'driver careless behavior detection' for AI Online Competition 2021, hosted by MSIT Korea.

2021AICompetition-03 ๋ณธ repo ๋Š” mAy-I Inc. ํŒ€์œผ๋กœ ์ฐธ๊ฐ€ํ•œ 2021 ์ธ๊ณต์ง€๋Šฅ ์˜จ๋ผ์ธ ๊ฒฝ์ง„๋Œ€ํšŒ ์ค‘ [์ด๋ฏธ์ง€] ์šด์ „ ์‚ฌ๊ณ  ์˜ˆ๋ฐฉ์„ ์œ„ํ•œ ์šด์ „์ž ๋ถ€์ฃผ์˜ ํ–‰๋™ ๊ฒ€์ถœ ๋ชจ๋ธ] ํƒœ์Šคํฌ ์ˆ˜ํ–‰์„ ์œ„ํ•œ ๋ ˆํฌ์ง€ํ† ๋ฆฌ์ž…๋‹ˆ๋‹ค. mAy-I ๋Š” ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณดํ†ต์‹ ๋ถ€๊ฐ€ ์ฃผ์ตœํ•˜

Junhyuk Park 9 Dec 01, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022