EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

Overview

BioLAMA

BioLAMA

BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CTD, UMLS, and Wikidata. Please see our paper Can Language Models be Biomedical Knowledge Bases? (Sung et al., 2021) for more details.

* The dataset for the BioLAMA probe is available at data.tar.gz

Getting Started

After the installation, you can easily try BioLAMA with manual prompts. When a subject is "flu" and you want to probe its symptoms from an LM, the input should be like "Flu has symptom such as [Y]."

# Set MODEL to bert-base-cased for BERT or dmis-lab/biobert-base-cased-v1.2 for BioBERT
MODEL=./RoBERTa-base-PM-Voc/RoBERTa-base-PM-Voc-hf
python ./BioLAMA/cli_demo.py \
    --model_name_or_path ${MODEL}

Result:

Please enter input (e.g., Flu has symptoms such as [Y].):
hepatocellular carcinoma has symptoms such as [Y].
-------------------------
Rank    Prob    Pred
-------------------------
1       0.648   jaundice
2       0.223   abdominal pain
3       0.127   jaundice and ascites
4       0.11    ascites
5       0.086   hepatomegaly
6       0.074   obstructive jaundice
7       0.06    abdominal pain and jaundice
8       0.059   ascites and jaundice
9       0.043   anorexia and jaundice
10      0.042   fever and jaundice
-------------------------
Top1 prediction sentence:
"hepatocellular carcinoma has symptoms such as jaundice."

Quick Link

Installation

# Install torch with conda (please check your CUDA version)
conda create -n BioLAMA python=3.7
conda activate BioLAMA
conda install pytorch=1.8.0 cudatoolkit=10.2 -c pytorch

# Install BioLAMA
git clone https://github.com/dmis-lab/BioLAMA.git
cd BioLAMA
pip install -r requirements.txt

Resources

Models

For BERT and BioBERT, we use checkpoints provided in the Huggingface Hub:

Bio-LM is not provided in the Huggingface Hub. Therefore, we use the Bio-LM checkpoint released in link. Among the various versions of Bio-LMs, we use `RoBERTa-base-PM-Voc-hf'.

wget https://dl.fbaipublicfiles.com/biolm/RoBERTa-base-PM-Voc-hf.tar.gz
tar -xzvf RoBERTa-base-PM-Voc-hf.tar.gz 
rm -rf RoBERTa-base-PM-Voc-hf.tar.gz

Datasets

The dataset will take about 78 MB of space. Download data.tar.gz and uncompress it.

tar -xzvf data.tar.gz
rm -rf data.tar.gz

The directory tree of the data is like:

data
├── ctd
│   ├── entities
│   ├── meta
│   ├── prompts
│   └── triples_processed
│       └── CD1
│           ├── dev.jsonl
│           ├── test.jsonl
│           └── train.jsonl
├── wikidata
│   ├── entities
│   ├── meta
│   ├── prompts
│   └── triples_processed
│       └── P2175
│           ├── dev.jsonl
│           ├── test.jsonl
│           └── train.jsonl
└── umls
    ├── meta
    └── prompts

Important: Triples of UMLS is not provided due to the license. For those who want to probe LMs using triples of UMLS, we provide the pre-processing scripts for UMLS. Please follow this instruction.

Experiments

We provide two ways of probing PLMs with BioLAMA:

Manual Prompt

Manual Prompt probes PLMs using pre-defined manual prompts. The predictions and scores will be logged in '/output'.

# Set TASK to 'ctd' for CTD or 'umls' for UMLS
# Set MODEL to 'bert-base-cased' for BERT or 'dmis-lab/biobert-base-cased-v1.2' for BioBERT
TASK=wikidata
MODEL=./RoBERTa-base-PM-Voc/RoBERTa-base-PM-Voc-hf
PROMPT_PATH=./data/${TASK}/prompts/manual.jsonl
TEST_PATH=./data/${TASK}/triples_processed/*/test.jsonl

python ./BioLAMA/run_manual.py \
    --model_name_or_path ${MODEL} \
    --prompt_path ${PROMPT_PATH} \
    --test_path "${TEST_PATH}" \
    --init_method confidence \
    --iter_method none \
    --num_mask 10 \
    --max_iter 10 \
    --beam_size 5 \
    --batch_size 16 \
    --output_dir ./output/${TASK}_manual

Result:

PID     [email protected]   [email protected]
-------------------------
P2175   9.40    21.11
P2176   22.46   39.75
P2293   2.24    11.43
P4044   9.47    19.47
P780    16.30   37.85
-------------------------
MACRO   11.97   25.92

OptiPrompt

OptiPrompt probes PLMs using embedding-based prompts starting from embeddings of manual prompts. The predictions and scores will be logged in '/output'.

# Set TASK to 'ctd' for CTD or 'umls' for UMLS
# Set MODEL to 'bert-base-cased' for BERT or 'dmis-lab/biobert-base-cased-v1.2' for BioBERT
TASK=wikidata
MODEL=./RoBERTa-base-PM-Voc/RoBERTa-base-PM-Voc-hf
PROMPT_PATH=./data/${TASK}/prompts/manual.jsonl
TRAIN_PATH=./data/${TASK}/triples_processed/*/train.jsonl
DEV_PATH=./data/${TASK}/triples_processed/*/dev.jsonl
TEST_PATH=./data/${TASK}/triples_processed/*/test.jsonl
PROMPT_PATH=./data/${TASK}/prompts/manual.jsonl

python ./BioLAMA/run_optiprompt.py \
    --model_name_or_path ${MODEL} \
    --train_path "${TRAIN_PATH}" \
    --dev_path "${DEV_PATH}" \
    --test_path "${TEST_PATH}" \
    --prompt_path ${PROMPT_PATH} \
    --num_mask 10 \
    --init_method confidence \
    --iter_method none \
    --max_iter 10 \
    --beam_size 5 \
    --batch_size 16 \
    --lr 3e-3 \
    --epochs 10 \
    --seed 0 \
    --prompt_token_len 5 \
    --init_manual_template \
    --output_dir ./output/${TASK}_optiprompt

Result:

PID     [email protected]   [email protected]
-------------------------
P2175   9.47    24.94
P2176   20.14   39.57
P2293   2.90    9.21
P4044   7.53    18.58
P780    12.98   33.43
-------------------------
MACRO   7.28    18.51

Acknowledgement

Parts of the code are modified from genewikiworld, X-FACTR, and OptiPrompt. We appreciate the authors for making their projects open-sourced.

Citations

@inproceedings{sung2021can,
    title={Can Language Models be Biomedical Knowledge Bases},
    author={Sung, Mujeen and Lee, Jinhyuk and Yi, Sean and Jeon, Minji and Kim, Sungdong and Kang, Jaewoo},
    booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
    year={2021},
}
Owner
DMIS Laboratory - Korea University
Data Mining & Information Systems Laboratory @ Korea University
DMIS Laboratory - Korea University
Generate text line images for training deep learning OCR model (e.g. CRNN)

Generate text line images for training deep learning OCR model (e.g. CRNN)

532 Jan 06, 2023
Python implementation of TextRank for phrase extraction and summarization of text documents

PyTextRank PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, used to: extract the top-ranked phrases from text document

derwen.ai 1.9k Jan 06, 2023
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
RIDE automatically creates the package and boilerplate OOP Python node scripts as per your needs

RIDE: ROS IDE RIDE automatically creates the package and boilerplate OOP Python code for nodes as per your needs (RIDE is not an IDE, but even ROS isn

Jash Mota 20 Jul 14, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
Source code for AAAI20 "Generating Persona Consistent Dialogues by Exploiting Natural Language Inference".

Generating Persona Consistent Dialogues by Exploiting Natural Language Inference Source code for RCDG model in AAAI20 Generating Persona Consistent Di

16 Oct 08, 2022
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
A list of NLP(Natural Language Processing) tutorials

NLP Tutorial A list of NLP(Natural Language Processing) tutorials built on PyTorch. Table of Contents A step-by-step tutorial on how to implement and

Allen Lee 1.3k Dec 25, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Learning Spatio-Temporal Transformer for Visual Tracking

STARK The official implementation of the paper Learning Spatio-Temporal Transformer for Visual Tracking Highlights The strongest performances Tracker

Multimedia Research 485 Jan 04, 2023
Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning

Unet-TTS: Improving Unseen Speaker and Style Transfer in One-shot Voice Cloning English | 中文 ❗ Now we provide inferencing code and pre-training models

164 Jan 02, 2023
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
Bnagla hand written document digiiztion

Bnagla hand written document digiiztion This repo addresses the problem of digiizing hand written documents in Bangla. Documents have definite fields

Mushfiqur Rahman 1 Dec 10, 2021
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
Python module (C extension and plain python) implementing Aho-Corasick algorithm

pyahocorasick pyahocorasick is a fast and memory efficient library for exact or approximate multi-pattern string search meaning that you can find mult

Wojciech Muła 763 Dec 27, 2022
FastFormers - highly efficient transformer models for NLU

FastFormers FastFormers provides a set of recipes and methods to achieve highly efficient inference of Transformer models for Natural Language Underst

Microsoft 678 Jan 05, 2023
A paper list of pre-trained language models (PLMs).

Large-scale pre-trained language models (PLMs) such as BERT and GPT have achieved great success and become a milestone in NLP.

RUCAIBox 124 Jan 02, 2023