Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Related tags

Deep LearningViSha
Overview

Triple-cooperative Video Shadow Detection

Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official link].
by Zhihao Chen1, Liang Wan1, Lei Zhu2, Jia Shen1, Huazhu Fu3, Wennan Liu4, and Jing Qin5
1College of Intelligence and Computing, Tianjin University
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge
3Inception Institute of Artificial Intelligence, UAE
4Academy of Medical Engineering and Translational Medicine, Tianjin University
5The Hong Kong Polytechnic University

News: In 2021.4.7, We first release the code of TVSD and ViSha dataset.


Citation

@inproceedings{chen21TVSD,
     author = {Chen, Zhihao and Wan, Liang and Zhu, Lei and Shen, Jia and Fu, Huazhu and Liu, Wennan and Qin, Jing},
     title = {Triple-cooperative Video Shadow Detection},
     booktitle = {CVPR},
     year = {2021}
}

Dataset

ViSha dataset is available at ViSha Homepage

Requirement

  • Python 3.6
  • PyTorch 1.3.1
  • torchvision
  • numpy
  • tqdm
  • PIL
  • math
  • time
  • datatime
  • argparse
  • apex (alternative, fp16 for save memory and speedup)

Training

  1. Modify the data path on ./config.py
  2. Modify the pretrained backbone path on ./networks/resnext_modify/config.py
  3. Run by python train.py and model will be saved in ./models/TVSD

The pretrained ResNeXt model is ported from the official torch version, using the convertor provided by clcarwin. You can directly download the pretrained model ported by us.

Testing

  1. Modify the data path on ./config.py
  2. Make sure you have a snapshot in ./models/TVSD (Tips: You can download the trained model which is reported in our paper at BaiduNetdisk(pw: 8p5h) or Google Drive)
  3. Run by python infer.py to generate predicted masks
  4. Run by python evaluate.py to evaluate the generated results

Results in ViSha testing set

As mentioned in our paper, since there is no CNN-based method for video shadow detection, we make comparison against 12 state-of-the-art methods for relevant tasks, including BDRAR[1], DSD[2], MTMT[3] (single-image shadow detection), FPN[4], PSPNet[5] (single-image semantic segmentation), DSS[6], R^3 Net[7] (single-image saliency detection), PDBM[8], MAG[9] (video saliency detection), COSNet[10], FEELVOS[11], STM[12] (object object segmentation)
[1]L. Zhu, Z. Deng, X. Hu, C.-W. Fu, X. Xu, J. Qin, and P.-A. Heng. Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In ECCV, pages 121–136, 2018.
[2]Q. Zheng, X. Qiao, Y. Cao, and R.W. Lau. Distraction-aware shadow detection. In CVPR, pages 5167–5176, 2019.
[3]Z. Chen, L. Zhu, L. Wan, S. Wang, W. Feng, and P.-A. Heng. A multi-task mean teacher for semi-supervised shadow detection. In CVPR, pages 5611–5620, 2020.
[4]T.-Y. Lin, P. Doll´ar, R. Girshick, K. He, B. Hariharan, and S.Belongie. Feature pyramid networks for object detection. In CVPR, pages 2117–2125, 2017.
[5]H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing network. In CVPR, pages 2881–2890, 2017.
[6]Q. Hou, M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply supervised salient object detection with short connections. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4):815–828, 2019.
[7]Z. Deng, X. Hu, L. Zhu, X. Xu, J. Qin, G. Han, and P.-A. Heng. R3net: Recurrent residual refinement network for saliency detection. In IJCAI, pages 684–690. AAAI Press, 2018.
[8]H. Song, W. Wang, S. Zhao, J. Shen, and K.-M. Lam. Pyramid dilated deeper convlstm for video salient object detection. In ECCV, pages 715–731, 2018.
[9]H. Li, G. Chen, G. Li, and Y. Yu. Motion guided attention for video salient object detection. In ICCV, pages 7274–7283, 2019.
[10]X. Lu, W. Wang, C. Ma, J. Shen, L. Shao, and F. Porikli. See more, know more: Unsupervised video object segmentation with co-attention siamese networks. In CVPR, pages 3623–3632, 2019.
[11]P. Voigtlaender, Y. Chai, F. Schroff, H. Adam, B. Leibe, and L.-C. Chen. Feelvos: Fast end-to-end embedding learning for video object segmentation. In CVPR, June 2019.
[12]S.W. Oh, J.-Y. Lee, N. Xu, and S.J. Kim. Video object segmentation using space-time memory networks. In ICCV, pages 9226–9235, 2019.

We evaluate those methods and our TVSD in ViSha testing set and release all results in BaiduNetdisk(pw: ritw) or Google Drive

Owner
Zhihao Chen
Zhihao Chen
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
Official implementation of the Implicit Behavioral Cloning (IBC) algorithm

Implicit Behavioral Cloning This codebase contains the official implementation of the Implicit Behavioral Cloning (IBC) algorithm from our paper: Impl

Google Research 210 Dec 09, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
yufan 81 Dec 08, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022