Efficient 3D human pose estimation in video using 2D keypoint trajectories

Overview

3D human pose estimation in video with temporal convolutions and semi-supervised training

This is the implementation of the approach described in the paper:

Dario Pavllo, Christoph Feichtenhofer, David Grangier, and Michael Auli. 3D human pose estimation in video with temporal convolutions and semi-supervised training. In Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

More demos are available at https://dariopavllo.github.io/VideoPose3D

Results on Human3.6M

Under Protocol 1 (mean per-joint position error) and Protocol 2 (mean-per-joint position error after rigid alignment).

2D Detections BBoxes Blocks Receptive Field Error (P1) Error (P2)
CPN Mask R-CNN 4 243 frames 46.8 mm 36.5 mm
CPN Ground truth 4 243 frames 47.1 mm 36.8 mm
CPN Ground truth 3 81 frames 47.7 mm 37.2 mm
CPN Ground truth 2 27 frames 48.8 mm 38.0 mm
Mask R-CNN Mask R-CNN 4 243 frames 51.6 mm 40.3 mm
Ground truth -- 4 243 frames 37.2 mm 27.2 mm

Quick start

To get started as quickly as possible, follow the instructions in this section. This should allow you train a model from scratch, test our pretrained models, and produce basic visualizations. For more detailed instructions, please refer to DOCUMENTATION.md.

Dependencies

Make sure you have the following dependencies installed before proceeding:

  • Python 3+ distribution
  • PyTorch >= 0.4.0

Optional:

  • Matplotlib, if you want to visualize predictions. Additionally, you need ffmpeg to export MP4 videos, and imagemagick to export GIFs.
  • MATLAB, if you want to experiment with HumanEva-I (you need this to convert the dataset).

Dataset setup

You can find the instructions for setting up the Human3.6M and HumanEva-I datasets in DATASETS.md. For this short guide, we focus on Human3.6M. You are not required to setup HumanEva, unless you want to experiment with it.

In order to proceed, you must also copy CPN detections (for Human3.6M) and/or Mask R-CNN detections (for HumanEva).

Evaluating our pretrained models

The pretrained models can be downloaded from AWS. Put pretrained_h36m_cpn.bin (for Human3.6M) and/or pretrained_humaneva15_detectron.bin (for HumanEva) in the checkpoint/ directory (create it if it does not exist).

mkdir checkpoint
cd checkpoint
wget https://dl.fbaipublicfiles.com/video-pose-3d/pretrained_h36m_cpn.bin
wget https://dl.fbaipublicfiles.com/video-pose-3d/pretrained_humaneva15_detectron.bin
cd ..

These models allow you to reproduce our top-performing baselines, which are:

  • 46.8 mm for Human3.6M, using fine-tuned CPN detections, bounding boxes from Mask R-CNN, and an architecture with a receptive field of 243 frames.
  • 33.0 mm for HumanEva-I (on 3 actions), using pretrained Mask R-CNN detections, and an architecture with a receptive field of 27 frames. This is the multi-action model trained on 3 actions (Walk, Jog, Box).

To test on Human3.6M, run:

python run.py -k cpn_ft_h36m_dbb -arc 3,3,3,3,3 -c checkpoint --evaluate pretrained_h36m_cpn.bin

To test on HumanEva, run:

python run.py -d humaneva15 -k detectron_pt_coco -str Train/S1,Train/S2,Train/S3 -ste Validate/S1,Validate/S2,Validate/S3 -a Walk,Jog,Box --by-subject -c checkpoint --evaluate pretrained_humaneva15_detectron.bin

DOCUMENTATION.md provides a precise description of all command-line arguments.

Inference in the wild

We have introduced an experimental feature to run our model on custom videos. See INFERENCE.md for more details.

Training from scratch

If you want to reproduce the results of our pretrained models, run the following commands.

For Human3.6M:

python run.py -e 80 -k cpn_ft_h36m_dbb -arc 3,3,3,3,3

By default the application runs in training mode. This will train a new model for 80 epochs, using fine-tuned CPN detections. Expect a training time of 24 hours on a high-end Pascal GPU. If you feel that this is too much, or your GPU is not powerful enough, you can train a model with a smaller receptive field, e.g.

  • -arc 3,3,3,3 (81 frames) should require 11 hours and achieve 47.7 mm.
  • -arc 3,3,3 (27 frames) should require 6 hours and achieve 48.8 mm.

You could also lower the number of epochs from 80 to 60 with a negligible impact on the result.

For HumanEva:

python run.py -d humaneva15 -k detectron_pt_coco -str Train/S1,Train/S2,Train/S3 -ste Validate/S1,Validate/S2,Validate/S3 -b 128 -e 1000 -lrd 0.996 -a Walk,Jog,Box --by-subject

This will train for 1000 epochs, using Mask R-CNN detections and evaluating each subject separately. Since HumanEva is much smaller than Human3.6M, training should require about 50 minutes.

Semi-supervised training

To perform semi-supervised training, you just need to add the --subjects-unlabeled argument. In the example below, we use ground-truth 2D poses as input, and train supervised on just 10% of Subject 1 (specified by --subset 0.1). The remaining subjects are treated as unlabeled data and are used for semi-supervision.

python run.py -k gt --subjects-train S1 --subset 0.1 --subjects-unlabeled S5,S6,S7,S8 -e 200 -lrd 0.98 -arc 3,3,3 --warmup 5 -b 64

This should give you an error around 65.2 mm. By contrast, if we only train supervised

python run.py -k gt --subjects-train S1 --subset 0.1 -e 200 -lrd 0.98 -arc 3,3,3 -b 64

we get around 80.7 mm, which is significantly higher.

Visualization

If you have the original Human3.6M videos, you can generate nice visualizations of the model predictions. For instance:

python run.py -k cpn_ft_h36m_dbb -arc 3,3,3,3,3 -c checkpoint --evaluate pretrained_h36m_cpn.bin --render --viz-subject S11 --viz-action Walking --viz-camera 0 --viz-video "/path/to/videos/S11/Videos/Walking.54138969.mp4" --viz-output output.gif --viz-size 3 --viz-downsample 2 --viz-limit 60

The script can also export MP4 videos, and supports a variety of parameters (e.g. downsampling/FPS, size, bitrate). See DOCUMENTATION.md for more details.

License

This work is licensed under CC BY-NC. See LICENSE for details. Third-party datasets are subject to their respective licenses. If you use our code/models in your research, please cite our paper:

@inproceedings{pavllo:videopose3d:2019,
  title={3D human pose estimation in video with temporal convolutions and semi-supervised training},
  author={Pavllo, Dario and Feichtenhofer, Christoph and Grangier, David and Auli, Michael},
  booktitle={Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2019}
}
Owner
Meta Research
Meta Research
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Localization Distillation for Object Detection

Localization Distillation for Object Detection This repo is based on mmDetection. This is the code for our paper: Localization Distillation

274 Dec 26, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
JugLab 33 Dec 30, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Official PyTorch implementation of the paper: Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting.

Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting Official PyTorch implementation of the paper: Improving Graph Neural Net

Giorgos Bouritsas 58 Dec 31, 2022
Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes

Using Language Model to Bootstrap Human Activity Recognition Ambient Sensors Based in Smart Homes This repository is the official implementation of Us

Damien Bouchabou 0 Oct 18, 2021
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods."

pv_predict_unet-lstm Code for "Intra-hour Photovoltaic Generation Forecasting based on Multi-source Data and Deep Learning Methods." IEEE Transactions

FolkScientistInDL 8 Oct 08, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022