Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Overview

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchmarks. New annotation for both datasets is created with an extra attention to the reliability of the ground truth and three new protocols of varying difficulty are introduced. We additionally introduce 15 new challenging queries per dataset and a new set of 1M hard distractors.

This package provides support in downloading and using the new benchmark.

MATLAB

Tested with MATLAB R2017a on Debian 8.1.

Process images

This example script first downloads dataset images and the revisited annotation files. Then, it describes how to: read and process database images; read, crop and process query images:

>> example_process_images

Similarly, this example script first downloads one million images from the revisited distractor dataset (this can take a while). Then, it describes how to read and process images.

>> example_process_distractors

Evaluate results

Example script that describes how to evaluate according to the revisited annotation and the three protocol setups:

>> example_evaluate

It automatically downloads dataset images, the revisited annotation file, and example features (R-[37]-GeM from the paper) to be used in the evaluation. The final output should look like this (depending on the selected test_dataset):

>> roxford5k: mAP E: 84.81, M: 64.67, H: 38.47
>> roxford5k: [email protected][1 5 10] E: [97.06 92.06 86.49], M: [97.14 90.67 84.67], H: [81.43 63.00 53.00]

or

>> rparis6k: mAP E: 92.12, M: 77.20, H: 56.32
>> rparis6k: [email protected][1 5 10] E: [100.00 97.14 96.14], M: [100.00 98.86 98.14], H: [94.29 90.29 89.14]

Python

Tested with Python 3.5.3 on Debian 8.1.

Process images

This example script first downloads dataset images and the revisited annotation files. Then, it describes how to: read and process database images; read, crop and process query images:

>> python3 example_process_images

Similarly, this example script first downloads one million images from the revisited distractor dataset (this can take a while). Then, it describes how to read and process images.

>> python3 example_process_distractors

Evaluate results

Example script that describes how to evaluate according to the revisited annotation and the three protocol setups:

>> python3 example_evaluate

It automatically downloads dataset images, revisited annotation file, and example features (R-[37]-GeM from the paper) to be used in the evaluation. The final output should look like this (depending on the selected test_dataset):

>> roxford5k: mAP E: 84.81, M: 64.67, H: 38.47
>> roxford5k: [email protected][ 1  5 10] E: [97.06 92.06 86.49], M: [97.14 90.67 84.67], H: [81.43 63.   53.  ]

or

>> rparis6k: mAP E: 92.12, M: 77.2, H: 56.32
>> rparis6k: [email protected][ 1  5 10] E: [100.    97.14  96.14], M: [100.    98.86  98.14], H: [94.29 90.29 89.14]

Related publication

@inproceedings{RITAC18,
 author = {Radenovi\'{c}, F. and Iscen, A. and Tolias, G. and Avrithis, Y. and Chum, O.},
 title = {Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking},
 booktitle = {CVPR},
 year = {2018}
}
Owner
Filip Radenovic
Research Scientist at Facebook
Filip Radenovic
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation

DistMIS Distributing Deep Learning Hyperparameter Tuning for 3D Medical Image Segmentation. DistriMIS Distributing Deep Learning Hyperparameter Tuning

HiEST 2 Sep 09, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
[CVPR 2021 Oral] Variational Relational Point Completion Network

VRCNet: Variational Relational Point Completion Network This repository contains the PyTorch implementation of the paper: Variational Relational Point

PL 121 Dec 12, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022