PyTorch implementation for NED. It can be used to manipulate the facial emotions of actors in videos based on emotion labels or reference styles.

Related tags

Deep LearningNED
Overview

Neural Emotion Director (NED) - Official Pytorch Implementation

Example video of facial emotion manipulation while retaining the original mouth motion, i.e. speech. We show examples of 3 basic emotions.



This repository contains the source code for our paper:

Neural Emotion Director: Speech-preserving semantic control of facial expressions in “in-the-wild” videos
Foivos Paraperas Papantoniou, Panagiotis P. Filntisis, Petros Maragos, Anastasios Roussos

Project site: https://foivospar.github.io/NED/

Abstract: In this paper, we introduce a novel deep learning method for photo-realistic manipulation of the emotional state of actors in ``in-the-wild'' videos. The proposed method is based on a parametric 3D face representation of the actor in the input scene that offers a reliable disentanglement of the facial identity from the head pose and facial expressions. It then uses a novel deep domain translation framework that alters the facial expressions in a consistent and plausible manner, taking into account their dynamics. Finally, the altered facial expressions are used to photo-realistically manipulate the facial region in the input scene based on an especially-designed neural face renderer. To the best of our knowledge, our method is the first to be capable of controlling the actor’s facial expressions by even using as a sole input the semantic labels of the manipulated emotions, while at the same time preserving the speech-related lip movements. We conduct extensive qualitative and quantitative evaluations and comparisons, which demonstrate the effectiveness of our approach and the especially promising results that we obtain. Our method opens a plethora of new possibilities for useful applications of neural rendering technologies, ranging from movie post-production and video games to photo-realistic affective avatars.

Getting Started

Clone the repo:

git clone https://github.com/foivospar/NED
cd NED

Requirements

Create a conda environment, using the provided environment.yml file.

conda env create -f environment.yml

Activate the environment.

conda activate NED

Files

  1. Follow the instructions in DECA (under the Prepare data section) to acquire the 3 files ('generic_model.pkl', 'deca_model.tar', 'FLAME_albedo_from_BFM.npz') and place them under "./DECA/data".
  2. Fill out the form to get access to the FSGAN's pretrained models. Then download 'lfw_figaro_unet_256_2_0_segmentation_v1.pth' (from the "v1" folder) and place it under "./preprocessing/segmentation".

Video preprocessing

To train or test the method on a specific subject, first create a folder for this subject and place the video(s) of this subject into a "videos" subfolder. To acquire the training/test videos used in our experiments, please contact us.

For example, for testing the method on Tarantino's clip, a structure similar to the following must be created:

Tarantino ----- videos ----- Tarantino_t.mp4

Under the above structure, there are 3 options for the video(s) placed in the "videos" subfolder:

  1. Use it as test footage for this actor and apply our method for manipulating his/her emotion.
  2. Use this footage to train a neural face renderer on the actor (e.g. use the training video one of our 6 Youtube actors, or a footage of similar duration for a new identity).
  3. Use it only as reference clip for transferring the expressive style of the actor to another subject.

To preprocess the video (face detection, segmentation, landmark detection, 3D reconstruction, alignment) run:

./preprocess.sh <celeb_path> <mode>
  • is the path to the folder used for this actor.
  • is one of {train, test, reference} for each of the above cases respectively.

After successfull execution, the following structure will be created:


   
     ----- videos -----video.mp4 (e.g. "Tarantino_t.mp4")
                   |        |
                   |        ---video.txt (e.g. "Tarantino_t.txt", stores the per-frame bounding boxes, created only if mode=test)
                   |
                   --- images (cropped and resized images)
                   |
                   --- full_frames (original frames of the video, created only if mode=test or mode=reference)
                   |
                   --- eye_landmarks (created only if mode=train or mode=test)
                   |
                   --- eye_landmarks_aligned (same as above, but aligned)
                   |
                   --- align_transforms (similarity transformation matrices, created only if mode=train or mode=test)
                   |
                   --- faces (segmented images of the face, created only if mode=train or mode=test)
                   |
                   --- faces_aligned (same as above, but aligned)
                   |
                   --- masks (binary face masks, created only if mode=train or mode=test)
                   |
                   --- masks_aligned (same as above, but aligned)
                   |
                   --- DECA (3D face model parameters)
                   |
                   --- nmfcs (NMFC images, created only if mode=train or mode=test)
                   |
                   --- nmfcs_aligned (same as above, but aligned)
                   |
                   --- shapes (detailed shape images, created only if mode=train or mode=test)
                   |
                   --- shapes_aligned (same as above, but aligned)

   

1.Manipulate the emotion on a test video

Download our pretrained manipulator from here and unzip the checkpoint. We currently provide only the test scripts for the manipulator.

Also, preprocess the test video for one of our target Youtube actors or use a new actor (requires training a new neural face renderer).

For our Youtube actors, we provide pretrained renderer models here. Download the .zip file for the desired actor and unzip it.

Then, assuming that preprocessing (in test mode) has been performed for the selected test video (see above), you can manipulate the expressions of the celebrity in this video by one of the following 2 ways:

1.Label-driven manipulation

Select one of the 7 basic emotions (happy, angry, surprised, neutral, fear, sad, disgusted) and run :

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir ./manipulator_checkpoints --trg_emotions <emotions> --exp_name <exp_name>
  • is the path to the folder used for this actor's test footage (e.g. "./Tarantino").
  • is one or more of the 7 emotions. If one emotion is given, e.g. --trg_emotions happy, all the video will be converted to happy, whereas for 2 or more emotions, such as --trg_emotions happy angry the first half of the video will be happy, the second half angry and so on.
  • is the name of the sub-folder that will be created under the for storing the results.
2.Reference-driven manipulation

In this case, the reference video should first be preprocessed (see above) in reference mode. Then run:

python manipulator/test.py --celeb <celeb_path> --checkpoints_dir ./manipulator_checkpoints --ref_dirs <ref_dirs> --exp_name <exp_name>
  • is the path to the folder used for this actor's test footage (e.g. "./Tarantino").
  • is one or more reference videos. In particular, the path to the "DECA" sublfolder has to be given. As with labels, more than one paths can be given, in which case the video will be transformed sequentially according to those reference styles.
  • is the name of the sub-folder that will be created under the for storing the results.

Then, run:

./postprocess.sh <celeb_path> <exp_name> <checkpoints_dir>
  • is the path to the test folder used for this actor.
  • is the name you have given to the experiment in the previous step.
  • is the path to the pretrained renderer for this actor (e.g. "./checkpoints_tarantino" for Tarantino).

This step performs neural rendering, un-alignment and blending of the modified faces. Finally, you should see the full_frames sub-folder into / . This contains the full frames of the video with the altered emotion. To convert them to video, run:

python postprocessing/images2video.py --imgs_path <full_frames_path> --out_path <out_path> --audio <original_video_path>
  • is the path to the full frames (e.g. "./Tarantino/happy/full_frames").
  • is the path for saving the video (e.g. "./Tarantino_happy.mp4").
  • is the path to the original video (e.g. "./Tarantino/videos/tarantino_t.mp4"). This argment is optional and is used to add the original audio to the generated video.

2.Train a neural face renderer for a new celebrity

Download our pretrained meta-renderer ("checkpoints_meta-renderer.zip") from the link above and unzip the checkpoints.

Assuming that the training video of the new actor has been preprocessed (in train mode) as described above, you can then finetune our meta-renderer on this actor by running:

python renderer/train.py --celeb <celeb_path> --checkpoints_dir <checkpoints_dir> --load_pretrain <pretrain_checkpoints> --which_epoch 15
  • is the path to the train folder used for the new actor.
  • is the new path where the checkpoints will be saved.
  • is the path with the checkpoints of the pretrained meta-renderer (e.g. "./checkpoints_meta-renderer")

3.Preprocess a reference video

If you want to use a reference clip (e.g. from a movie) of another actor to transfer his/her speaking style to your test actor, simply preprocess the reference actor's clip as described above (mode=reference) and follow the instructions on Reference-driven manipulation.

Citation

If you find this work useful for your research, please cite our paper.

@article{paraperas2021neural,
         title={Neural Emotion Director: Speech-preserving semantic control of facial expressions in "in-the-wild" videos}, 
         author={Paraperas Papantoniou, Foivos and Filntisis, Panagiotis P. and Maragos, Petros and Roussos, Anastasios},
         journal={arXiv preprint arXiv:2112.00585},
         year={2021}
}

Acknowledgements

We would like to thank the following great repositories that our code borrows from:

Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
DeLiGAN - This project is an implementation of the Generative Adversarial Network

This project is an implementation of the Generative Adversarial Network proposed in our CVPR 2017 paper - DeLiGAN : Generative Adversarial Net

Video Analytics Lab -- IISc 110 Sep 13, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Self-attentive task GAN for space domain awareness data augmentation.

SATGAN TODO: update the article URL once published. Article about this implemention The self-attentive task generative adversarial network (SATGAN) le

Nathan 2 Mar 24, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
ivadomed is an integrated framework for medical image analysis with deep learning.

Repository on the collaborative IVADO medical imaging project between the Mila and NeuroPoly labs.

144 Dec 19, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022