The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

Overview

TimeSformer

This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provide PyTorch code for training and testing our proposed TimeSformer model. TimeSformer provides an efficient video classification framework that achieves state-of-the-art results on several video action recognition benchmarks such as Kinetics-400.

If you find TimeSformer useful in your research, please use the following BibTeX entry for citation.

@misc{bertasius2021spacetime,
    title   = {Is Space-Time Attention All You Need for Video Understanding?},
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    year    = {2021},
    eprint  = {2102.05095},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}

Model Zoo

We provide TimeSformer models pretrained on Kinetics-400 (K400), Kinetics-600 (K600), Something-Something-V2 (SSv2), and HowTo100M datasets.

name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer K400 8 224 77.9 93.2 model
TimeSformer-HR K400 16 448 79.6 94.0 model
TimeSformer-L K400 96 224 80.6 94.7 model
name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer K600 8 224 79.1 94.4 model
TimeSformer-HR K600 16 448 81.8 95.8 model
TimeSformer-L K600 96 224 82.2 95.6 model
name dataset # of frames spatial crop [email protected] [email protected] url
TimeSformer SSv2 8 224 59.1 85.6 model
TimeSformer-HR SSv2 16 448 61.8 86.9 model
TimeSformer-L SSv2 64 224 62.0 87.5 model
name dataset # of frames spatial crop single clip coverage [email protected] url
TimeSformer HowTo100M 8 224 8.5s 56.8 model
TimeSformer HowTo100M 32 224 34.1s 61.2 model
TimeSformer HowTo100M 64 448 68.3s 62.2 model
TimeSformer HowTo100M 96 224 102.4s 62.6 model

We note that these models were retrained using a slightly different implementation than the one used in the paper. Therefore, there might be a small difference in performance compared to the results reported in the paper.

Installation

First, create a conda virtual environment and activate it:

conda create -n timesformer python=3.7 -y
source activate timesformer

Then, install the following packages:

  • torchvision: pip install torchvision or conda install torchvision -c pytorch
  • fvcore: pip install 'git+https://github.com/facebookresearch/fvcore'
  • simplejson: pip install simplejson
  • einops: pip install einops
  • timm: pip install timm
  • PyAV: conda install av -c conda-forge
  • psutil: pip install psutil
  • OpenCV: pip install opencv-python
  • tensorboard: pip install tensorboard

Lastly, build the TimeSformer codebase by running:

git clone https://github.com/facebookresearch/TimeSformer
cd TimeSformer
python setup.py build develop

Usage

Dataset Preparation

Please use the dataset preparation instructions provided in DATASET.md.

Training the Default TimeSformer

Training the default TimeSformer that uses divided space-time attention, and operates on 8-frame clips cropped at 224x224 spatial resolution, can be done using the following command:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

You may need to pass location of your dataset in the command line by adding DATA.PATH_TO_DATA_DIR path_to_your_dataset, or you can simply add

DATA:
  PATH_TO_DATA_DIR: path_to_your_dataset

To the yaml configs file, then you do not need to pass it to the command line every time.

Using a Different Number of GPUs

If you want to use a smaller number of GPUs, you need to modify .yaml configuration files in configs/. Specifically, you need to modify the NUM_GPUS, TRAIN.BATCH_SIZE, TEST.BATCH_SIZE, DATA_LOADER.NUM_WORKERS entries in each configuration file. The BATCH_SIZE entry should be the same or higher as the NUM_GPUS entry. In configs/Kinetics/TimeSformer_divST_8x32_224_4gpus.yaml, we provide a sample configuration file for a 4 GPU setup.

Using Different Self-Attention Schemes

If you want to experiment with different space-time self-attention schemes, e.g., space-only or joint space-time attention, use the following commands:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_spaceOnly_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_jointST_8x32_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Training Different TimeSformer Variants

If you want to train more powerful TimeSformer variants, e.g., TimeSformer-HR (operating on 16-frame clips sampled at 448x448 spatial resolution), and TimeSformer-L (operating on 96-frame clips sampled at 224x224 spatial resolution), use the following commands:

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_16x16_448.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

and

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_96x4_224.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  NUM_GPUS 8 \
  TRAIN.BATCH_SIZE 8 \

Note that for these models you will need a set of GPUs with ~32GB of memory.

Inference

Use TRAIN.ENABLE and TEST.ENABLE to control whether training or testing is required for a given run. When testing, you also have to provide the path to the checkpoint model via TEST.CHECKPOINT_FILE_PATH.

python tools/run_net.py \
  --cfg configs/Kinetics/TimeSformer_divST_8x32_224_TEST.yaml \
  DATA.PATH_TO_DATA_DIR path_to_your_dataset \
  TEST.CHECKPOINT_FILE_PATH path_to_your_checkpoint \
  TRAIN.ENABLE False \

Single-Node Training via Slurm

To train TimeSformer via Slurm, please check out our single node Slurm training script slurm_scripts/run_single_node_job.sh.

Multi-Node Training via Submitit

Distributed training is available via Slurm and submitit

pip install submitit

To train TimeSformer model on Kinetics using 4 nodes with 8 gpus each use the following command:

python tools/submit.py --cfg configs/Kinetics/TimeSformer_divST_8x32_224.yaml --job_dir  /your/job/dir/${JOB_NAME}/ --num_shards 4 --name ${JOB_NAME} --use_volta32

We provide a script for launching slurm jobs in slurm_scripts/run_multi_node_job.sh.

Finetuning

To finetune from an existing PyTorch checkpoint add the following line in the command line, or you can also add it in the YAML config:

TRAIN.CHECKPOINT_FILE_PATH path_to_your_PyTorch_checkpoint
TRAIN.FINETUNE True

HowTo100M Dataset Split

If you want to experiment with the long-term video modeling task on HowTo100M, please download the train/test split files from here.

Environment

The code was developed using python 3.7 on Ubuntu 20.04. For training, we used four GPU compute nodes each node containing 8 Tesla V100 GPUs (32 GPUs in total). Other platforms or GPU cards have not been fully tested.

License

The majority of this work is licensed under CC-NC 4.0 International license. However portions of the project are available under separate license terms: SlowFast and pytorch-image-models are licensed under the Apache 2.0 license.

Contributing

We actively welcome your pull requests. Please see CONTRIBUTING.md and CODE_OF_CONDUCT.md for more info.

Acknowledgements

TimeSformer is built on top of PySlowFast and pytorch-image-models by Ross Wightman. We thank the authors for releasing their code. If you use our model, please consider citing these works as well:

@misc{fan2020pyslowfast,
  author =       {Haoqi Fan and Yanghao Li and Bo Xiong and Wan-Yen Lo and
                  Christoph Feichtenhofer},
  title =        {PySlowFast},
  howpublished = {\url{https://github.com/facebookresearch/slowfast}},
  year =         {2020}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
Owner
Facebook Research
Facebook Research
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking

StackRec: Efficient Training of Very Deep Sequential Recommender Models by Iterative Stacking Datasets You can download datasets that have been pre-pr

25 May 29, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
This is the code used in the paper "Entity Embeddings of Categorical Variables".

This is the code used in the paper "Entity Embeddings of Categorical Variables". If you want to get the original version of the code used for the Kagg

Cheng Guo 845 Nov 29, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Numenta published papers code and data

Numenta research papers code and data This repository contains reproducible code for selected Numenta papers. It is currently under construction and w

Numenta 293 Jan 06, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
Official repository for "Restormer: Efficient Transformer for High-Resolution Image Restoration". SOTA for motion deblurring, image deraining, denoising (Gaussian/real data), and defocus deblurring.

Restormer: Efficient Transformer for High-Resolution Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan,

Syed Waqas Zamir 906 Dec 30, 2022
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022