ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

Overview

ELECTRA

Introduction

ELECTRA is a method for self-supervised language representation learning. It can be used to pre-train transformer networks using relatively little compute. ELECTRA models are trained to distinguish "real" input tokens vs "fake" input tokens generated by another neural network, similar to the discriminator of a GAN. At small scale, ELECTRA achieves strong results even when trained on a single GPU. At large scale, ELECTRA achieves state-of-the-art results on the SQuAD 2.0 dataset.

For a detailed description and experimental results, please refer to our ICLR 2020 paper ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators.

This repository contains code to pre-train ELECTRA, including small ELECTRA models on a single GPU. It also supports fine-tuning ELECTRA on downstream tasks including classification tasks (e.g,. GLUE), QA tasks (e.g., SQuAD), and sequence tagging tasks (e.g., text chunking).

This repository also contains code for Electric, a version of ELECTRA inspired by energy-based models. Electric provides a more principled view of ELECTRA as a "negative sampling" cloze model. It can also efficiently produce pseudo-likelihood scores for text, which can be used to re-rank the outputs of speech recognition or machine translation systems. For details on Electric, please refer to out EMNLP 2020 paper Pre-Training Transformers as Energy-Based Cloze Models.

Released Models

We are initially releasing three pre-trained models:

Model Layers Hidden Size Params GLUE score (test set) Download
ELECTRA-Small 12 256 14M 77.4 link
ELECTRA-Base 12 768 110M 82.7 link
ELECTRA-Large 24 1024 335M 85.2 link

The models were trained on uncased English text. They correspond to ELECTRA-Small++, ELECTRA-Base++, ELECTRA-1.75M in our paper. We hope to release other models, such as multilingual models, in the future.

On GLUE, ELECTRA-Large scores slightly better than ALBERT/XLNET, ELECTRA-Base scores better than BERT-Large, and ELECTRA-Small scores slightly worst than TinyBERT (but uses no distillation). See the expected results section below for detailed performance numbers.

Requirements

Pre-training

Use build_pretraining_dataset.py to create a pre-training dataset from a dump of raw text. It has the following arguments:

  • --corpus-dir: A directory containing raw text files to turn into ELECTRA examples. A text file can contain multiple documents with empty lines separating them.
  • --vocab-file: File defining the wordpiece vocabulary.
  • --output-dir: Where to write out ELECTRA examples.
  • --max-seq-length: The number of tokens per example (128 by default).
  • --num-processes: If >1 parallelize across multiple processes (1 by default).
  • --blanks-separate-docs: Whether blank lines indicate document boundaries (True by default).
  • --do-lower-case/--no-lower-case: Whether to lower case the input text (True by default).

Use run_pretraining.py to pre-train an ELECTRA model. It has the following arguments:

  • --data-dir: a directory where pre-training data, model weights, etc. are stored. By default, the training loads examples from <data-dir>/pretrain_tfrecords and a vocabulary from <data-dir>/vocab.txt.
  • --model-name: a name for the model being trained. Model weights will be saved in <data-dir>/models/<model-name> by default.
  • --hparams (optional): a JSON dict or path to a JSON file containing model hyperparameters, data paths, etc. See configure_pretraining.py for the supported hyperparameters.

If training is halted, re-running the run_pretraining.py with the same arguments will continue the training where it left off.

You can continue pre-training from the released ELECTRA checkpoints by

  1. Setting the model-name to point to a downloaded model (e.g., --model-name electra_small if you downloaded weights to $DATA_DIR/electra_small).
  2. Setting num_train_steps by (for example) adding "num_train_steps": 4010000 to the --hparams. This will continue training the small model for 10000 more steps (it has already been trained for 4e6 steps).
  3. Increase the learning rate to account for the linear learning rate decay. For example, to start with a learning rate of 2e-4 you should set the learning_rate hparam to 2e-4 * (4e6 + 10000) / 10000.
  4. For ELECTRA-Small, you also need to specifiy "generator_hidden_size": 1.0 in the hparams because we did not use a small generator for that model.

Quickstart: Pre-train a small ELECTRA model.

These instructions pre-train a small ELECTRA model (12 layers, 256 hidden size). Unfortunately, the data we used in the paper is not publicly available, so we will use the OpenWebTextCorpus released by Aaron Gokaslan and Vanya Cohen instead. The fully-trained model (~4 days on a v100 GPU) should perform roughly in between GPT and BERT-Base in terms of GLUE performance. By default the model is trained on length-128 sequences, so it is not suitable for running on question answering. See the "expected results" section below for more details on model performance.

Setup

  1. Place a vocabulary file in $DATA_DIR/vocab.txt. Our ELECTRA models all used the exact same vocabulary as English uncased BERT, which you can download here.
  2. Download the OpenWebText corpus (12G) and extract it (i.e., run tar xf openwebtext.tar.xz). Place it in $DATA_DIR/openwebtext.
  3. Run python3 build_openwebtext_pretraining_dataset.py --data-dir $DATA_DIR --num-processes 5. It pre-processes/tokenizes the data and outputs examples as tfrecord files under $DATA_DIR/pretrain_tfrecords. The tfrecords require roughly 30G of disk space.

Pre-training the model.

Run python3 run_pretraining.py --data-dir $DATA_DIR --model-name electra_small_owt to train a small ELECTRA model for 1 million steps on the data. This takes slightly over 4 days on a Tesla V100 GPU. However, the model should achieve decent results after 200k steps (10 hours of training on the v100 GPU).

To customize the training, add --hparams '{"hparam1": value1, "hparam2": value2, ...}' to the run command. --hparams can also be a path to a .json file containing the hyperparameters. Some particularly useful options:

  • "debug": true trains a tiny ELECTRA model for a few steps.
  • "model_size": one of "small", "base", or "large": determines the size of the model
  • "electra_objective": false trains a model with masked language modeling instead of replaced token detection (essentially BERT with dynamic masking and no next-sentence prediction).
  • "num_train_steps": n controls how long the model is pre-trained for.
  • "pretrain_tfrecords": <paths> determines where the pre-training data is located. Note you need to specify the specific files not just the directory (e.g., <data-dir>/pretrain_tf_records/pretrain_data.tfrecord*)
  • "vocab_file": <path> and "vocab_size": n can be used to set a custom wordpiece vocabulary.
  • "learning_rate": lr, "train_batch_size": n, etc. can be used to change training hyperparameters
  • "model_hparam_overrides": {"hidden_size": n, "num_hidden_layers": m}, etc. can be used to changed the hyperparameters for the underlying transformer (the "model_size" flag sets the default values).

See configure_pretraining.py for the full set of supported hyperparameters.

Evaluating the pre-trained model.

To evaluate the model on a downstream task, see the below finetuning instructions. To evaluate the generator/discriminator on the openwebtext data run python3 run_pretraining.py --data-dir $DATA_DIR --model-name electra_small_owt --hparams '{"do_train": false, "do_eval": true}'. This will print out eval metrics such as the accuracy of the generator and discriminator, and also writing the metrics out to data-dir/model-name/results.

Fine-tuning

Use run_finetuning.py to fine-tune and evaluate an ELECTRA model on a downstream NLP task. It expects three arguments:

  • --data-dir: a directory where data, model weights, etc. are stored. By default, the script loads finetuning data from <data-dir>/finetuning_data/<task-name> and a vocabulary from <data-dir>/vocab.txt.
  • --model-name: a name of the pre-trained model: the pre-trained weights should exist in data-dir/models/model-name.
  • --hparams: a JSON dict containing model hyperparameters, data paths, etc. (e.g., --hparams '{"task_names": ["rte"], "model_size": "base", "learning_rate": 1e-4, ...}'). See configure_pretraining.py for the supported hyperparameters. Instead of a dict, this can also be a path to a .json file containing the hyperparameters. You must specify the "task_names" and "model_size" (see examples below).

Eval metrics will be saved in data-dir/model-name/results and model weights will be saved in data-dir/model-name/finetuning_models by default. Evaluation is done on the dev set by default. To customize the training, add --hparams '{"hparam1": value1, "hparam2": value2, ...}' to the run command. Some particularly useful options:

  • "debug": true fine-tunes a tiny ELECTRA model for a few steps.
  • "task_names": ["task_name"]: specifies the tasks to train on. A list because the codebase nominally supports multi-task learning, (although be warned this has not been thoroughly tested).
  • "model_size": one of "small", "base", or "large": determines the size of the model; you must set this to the same size as the pre-trained model.
  • "do_train" and "do_eval": train and/or evaluate a model (both are set to true by default). For using "do_eval": true with "do_train": false, you need to specify the init_checkpoint, e.g., python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["mnli"], "do_train": false, "do_eval": true, "init_checkpoint": "<data-dir>/models/electra_base/finetuning_models/mnli_model_1"}'
  • "num_trials": n: If >1, does multiple fine-tuning/evaluation runs with different random seeds.
  • "learning_rate": lr, "train_batch_size": n, etc. can be used to change training hyperparameters.
  • "model_hparam_overrides": {"hidden_size": n, "num_hidden_layers": m}, etc. can be used to changed the hyperparameters for the underlying transformer (the "model_size" flag sets the default values).

Setup

Get a pre-trained ELECTRA model either by training your own (see pre-training instructions above), or downloading the release ELECTRA weights and unziping them under $DATA_DIR/models (e.g., you should have a directory$DATA_DIR/models/electra_large if you are using the large model).

Finetune ELECTRA on a GLUE task

Download the GLUE data by running this script. Set up the data by running mv CoLA cola && mv MNLI mnli && mv MRPC mrpc && mv QNLI qnli && mv QQP qqp && mv RTE rte && mv SST-2 sst && mv STS-B sts && mv diagnostic/diagnostic.tsv mnli && mkdir -p $DATA_DIR/finetuning_data && mv * $DATA_DIR/finetuning_data.

Then run run_finetuning.py. For example, to fine-tune ELECTRA-Base on MNLI

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["mnli"]}'

Or fine-tune a small model pre-trained using the above instructions on CoLA.

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_small_owt --hparams '{"model_size": "small", "task_names": ["cola"]}'

Finetune ELECTRA on question answering

The code supports SQuAD 1.1 and 2.0, as well as datasets in the 2019 MRQA shared task

  • Squad 1.1: Download the train and dev datasets and move them under $DATA_DIR/finetuning_data/squadv1/(train|dev).json
  • Squad 2.0: Download the datasets from the SQuAD Website and move them under $DATA_DIR/finetuning_data/squad/(train|dev).json
  • MRQA tasks: Download the data from here. Move the data to $DATA_DIR/finetuning_data/(newsqa|naturalqs|triviaqa|searchqa)/(train|dev).jsonl.

Then run (for example)

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["squad"]}'

This repository uses the official evaluation code released by the SQuAD authors and the MRQA shared task to compute metrics

Finetune ELECTRA on sequence tagging

Download the CoNLL-2000 text chunking dataset from here and put it under $DATA_DIR/finetuning_data/chunk/(train|dev).txt. Then run

python3 run_finetuning.py --data-dir $DATA_DIR --model-name electra_base --hparams '{"model_size": "base", "task_names": ["chunk"]}'

Adding a new task

The easiest way to run on a new task is to implement a new finetune.task.Task, add it to finetune.task_builder.py, and then use run_finetuning.py as normal. For classification/qa/sequence tagging, you can inherit from a finetune.classification.classification_tasks.ClassificationTask, finetune.qa.qa_tasks.QATask, or finetune.tagging.tagging_tasks.TaggingTask. For preprocessing data, we use the same tokenizer as BERT.

Expected Results

Here are expected results for ELECTRA on various tasks (test set for chunking, dev set for the other tasks). Note that variance in fine-tuning can be quite large, so for some tasks you may see big fluctuations in scores when fine-tuning from the same checkpoint multiple times. The below scores show median performance over a large number of random seeds. ELECTRA-Small/Base/Large are our released models. ELECTRA-Small-OWT is the OpenWebText-trained model from above (it performs a bit worse than ELECTRA-Small due to being trained for less time and on a smaller dataset).

CoLA SST MRPC STS QQP MNLI QNLI RTE SQuAD 1.1 SQuAD 2.0 Chunking
Metrics MCC Acc Acc Spearman Acc Acc Acc Acc EM EM F1
ELECTRA-Large 69.1 96.9 90.8 92.6 92.4 90.9 95.0 88.0 89.7 88.1 97.2
ELECTRA-Base 67.7 95.1 89.5 91.2 91.5 88.8 93.2 82.7 86.8 80.5 97.1
ELECTRA-Small 57.0 91.2 88.0 87.5 89.0 81.3 88.4 66.7 75.8 70.1 96.5
ELECTRA-Small-OWT 56.8 88.3 87.4 86.8 88.3 78.9 87.9 68.5 -- -- --

See here for losses / training curves of the models during pre-training.

Electric

To train Electric, use the same pre-training script and command as ELECTRA. Pass "electra_objective": false and "electric_objective": true to the hyperparameters. We plan to release pre-trained Electric models soon!

Citation

If you use this code for your publication, please cite the original paper:

@inproceedings{clark2020electra,
  title = {{ELECTRA}: Pre-training Text Encoders as Discriminators Rather Than Generators},
  author = {Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning},
  booktitle = {ICLR},
  year = {2020},
  url = {https://openreview.net/pdf?id=r1xMH1BtvB}
}

If you use the code for Electric, please cite the Electric paper:

@inproceedings{clark2020electric,
  title = {Pre-Training Transformers as Energy-Based Cloze Models},
  author = {Kevin Clark and Minh-Thang Luong and Quoc V. Le and Christopher D. Manning},
  booktitle = {EMNLP},
  year = {2020},
  url = {https://www.aclweb.org/anthology/2020.emnlp-main.20.pdf}
}

Contact Info

For help or issues using ELECTRA, please submit a GitHub issue.

For personal communication related to ELECTRA, please contact Kevin Clark ([email protected]).

Owner
Google Research
Google Research
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Fast topic modeling platform

The state-of-the-art platform for topic modeling. Full Documentation User Mailing List Download Releases User survey What is BigARTM? BigARTM is a pow

BigARTM 633 Dec 21, 2022
Finetune gpt-2 in google colab

gpt-2-colab finetune gpt-2 in google colab sample result (117M) from retraining on A Tale of Two Cities by Charles Di

212 Jan 02, 2023
A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex)

CodeJ A python project made to generate code using either OpenAI's codex or GPT-J (Although not as good as codex) Install requirements pip install -r

TheProtagonist 1 Dec 06, 2021
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
MPNet: Masked and Permuted Pre-training for Language Understanding

MPNet MPNet: Masked and Permuted Pre-training for Language Understanding, by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu, is a novel pre-tr

Microsoft 228 Nov 21, 2022
Large-scale pretraining for dialogue

A State-of-the-Art Large-scale Pretrained Response Generation Model (DialoGPT) This repository contains the source code and trained model for a large-

Microsoft 1.8k Jan 07, 2023
🤗Transformers: State-of-the-art Natural Language Processing for Pytorch and TensorFlow 2.0.

State-of-the-art Natural Language Processing for PyTorch and TensorFlow 2.0 🤗 Transformers provides thousands of pretrained models to perform tasks o

Hugging Face 77.3k Jan 03, 2023
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
Russian GPT3 models.

Russian GPT-3 models (ruGPT3XL, ruGPT3Large, ruGPT3Medium, ruGPT3Small) trained with 2048 sequence length with sparse and dense attention blocks. We also provide Russian GPT-2 large model (ruGPT2Larg

Sberbank AI 1.6k Jan 05, 2023
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022