RLDS stands for Reinforcement Learning Datasets

Related tags

Deep Learningrlds
Overview

RLDS

RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of Sequential Decision Making including Reinforcement Learning (RL), Learning for Demonstrations, Offline RL or Imitation Learning.

This repository includes a library for manipulating RLDS compliant datasets. For other parts of the pipeline please refer to:

  • EnvLogger to create synthetic datasets
  • RLDS Creator to create datasets where a human interacts with an environment.
  • TFDS for existing RL datasets.

QuickStart & Colabs

See how to use RLDS in this tutorial.

You can find more examples in the following colabs:

Dataset Format

The dataset is retrieved as a tf.data.Dataset of Episodes where each episode contains a tf.data.Dataset of steps.

drawing

  • Episode: dictionary that contains a tf.data.Dataset of Steps, and metadata.

  • Step: dictionary that contains:

    • observation: current observation
    • action: action taken in the current observation
    • reward: return after appyling the action to the current observation
    • is_terminal: if this is a terminal step
    • is_first: if this is the first step of an episode that contains the initial state.
    • is_last: if this is the last step of an episode, that contains the last observation. When true, action, reward and discount, and other cutom fields subsequent to the observation are considered invalid.
    • discount: discount factor at this step.
    • extra metadata

    When is_terminal = True, the observation corresponds to a final state, so reward, discount and action are meaningless. Depending on the environment, the final observation may also be meaningless.

    If an episode ends in a step where is_terminal = False, it means that this episode has been truncated. In this case, depending on the environment, the action, reward and discount might be empty as well.

How to create a dataset

Although you can read datasets with the RLDS format even if they were not created with our tools (for example, by adding them to TFDS), we recommend the use of EnvLogger and RLDS Creator as they ensure that the data is stored in a lossless fashion and compatible with RLDS.

Synthetic datasets

Envlogger provides a dm_env Environment class wrapper that records interactions between a real environment and an agent.

env = envloger.EnvironmentLogger(
      environment,
      data_directory=`/tmp/mydataset`)

Besides, two callbacks can be passed to the EnviromentLogger constructor to store per-step metadata and per-episode metadata. See the EnvLogger documentation for more details.

Note that per-session metadata can be stored but is currently ignored when loading the dataset.

Note that the Envlogger follows the dm_env convention. So considering:

  • o_i: observation at step i
  • a_i: action applied to o_i
  • r_i: reward obtained when applying a_i in o_i
  • d_i: discount for reward r_i
  • m_i: metadata for step i

Data is generated and stored as:

    (o_0, _, _, _, m_0) → (o_1, a_0, r_0, d_0, m_1)  → (o_2, a_1, r_1, d_1, m_2) ⇢ ...

But loaded with RLDS as:

    (o_0,a_0, r_0, d_0, m_0) → (o_1, a_1, r_1, d_1, m_1)  → (o_2, a_2, r_2, d_2, m_2) ⇢ ...

Human datasets

If you want to collect data generated by a human interacting with an environment, check the RLDS Creator.

How to load a dataset

RL datasets can be loaded with TFDS and they are retrieved with the canonical RLDS dataset format.

See this section for instructions on how to add an RLDS dataset to TFDS.

Load with TFDS

Datasets in the TFDS catalog

These datasets can be loaded directly with:

tfds.load('dataset_name').as_dataset()['train']

This is how we load the datasets in the tutorial.

See the full documentation and the catalog in the [TFDS] site.

Datasets in your own repository

Datasets can be implemented with TFDS both inside and outside of the TFDS repository. See examples here.

How to add your dataset to TFDS

Adding a dataset to TFDS involves two steps:

  • Implement a python class that provides a dataset builder with the specs of the data (e.g., what is the shape of the observations, actions, etc.) and how to read your dataset files.

  • Run a download_and_prepare pipeline that converts the data to the TFDS intermediate format.

You can add your dataset directly to TFDS following the instructions at https://www.tensorflow.org/datasets.

  • If your data has been generated with Envlogger or the RLDS Creator, you can just use the rlds helpers in TFDS (see here an example).
  • Otherwise, make sure your generate_examples implementation provides the same structure and keys as RLDS loaders if you want your dataset to be compatible with RLDS pipelines (example).

Note that you can follow the same steps to add the data to your own repository (see more details in the TFDS documentation).

Performance best practices

As RLDS exposes RL datasets in a form of Tensorflow's tf.data, many Tensorflow's performance hints apply to RLDS as well. It is important to note, however, that RLDS datasets are very specific and not all general speed-up methods work out of the box. advices on improving performance might not result in expected outcome. To get a better understanding on how to use RLDS datasets effectively we recommend going through this colab.

Citation

If you use RLDS, please cite the RLDS paper as

@misc{ramos2021rlds,
      title={RLDS: an Ecosystem to Generate, Share and Use Datasets in Reinforcement Learning},
      author={Sabela Ramos and Sertan Girgin and Léonard Hussenot and Damien Vincent and Hanna Yakubovich and Daniel Toyama and Anita Gergely and Piotr Stanczyk and Raphael Marinier and Jeremiah Harmsen and Olivier Pietquin and Nikola Momchev},
      year={2021},
      eprint={2111.02767},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

We greatly appreciate all the support from the TF-Agents team in setting up building and testing for EnvLogger.

Disclaimer

This is not an officially supported Google product.

Owner
Google Research
Google Research
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
Using fully convolutional networks for semantic segmentation with caffe for the cityscapes dataset

Using fully convolutional networks for semantic segmentation (Shelhamer et al.) with caffe for the cityscapes dataset How to get started Download the

Simon Guist 27 Jun 06, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
PyTorch implementation of Super SloMo by Jiang et al.

Super-SloMo PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun

Avinash Paliwal 2.9k Jan 03, 2023
PyTorch implementation of the paper: Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features

Label Noise Transition Matrix Estimation for Tasks with Lower-Quality Features Estimate the noise transition matrix with f-mutual information. This co

<a href=[email protected]"> 1 Jun 05, 2022
Training DiffWave using variational method from Variational Diffusion Models.

Variational DiffWave Training DiffWave using variational method from Variational Diffusion Models. Quick Start python train_distributed.py discrete_10

Chin-Yun Yu 26 Dec 13, 2022
百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline

项目说明: 百度2021年语言与智能技术竞赛机器阅读理解Pytorch版baseline 比赛链接:https://aistudio.baidu.com/aistudio/competition/detail/66?isFromLuge=true 官方的baseline版本是基于paddlepadd

周俊贤 54 Nov 23, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data

1 Meta-FDMIxup Repository for the paper : Meta-FDMixup: Cross-Domain Few-Shot Learning Guided byLabeled Target Data. (ACM MM 2021) paper News! the rep

Fu Yuqian 44 Nov 18, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022